


NOTICE 

This product is made available on an AS-IS basis only. No 
warranties of merchantability or fitness for any particular 
purpose are expressed, implied, or imagined. Breeze/QSD shall not 
be liable for damage or loss arising from the use or misuse of 
this product. Determination of suitability for any purpose is the 
sole responsibility of the ·user. 

Copyright (c) 1983 by Breeze/QSD. All rights reserved. 

No part of this publication may be reproduced in any form, 
including electronic, electromagnetic, xerographic or optical 
information storage media without the express written consent of 
Breeze/QSD, Inc. 



. 



User's Manual 1 

CHAPTER 1 - INTRODUCTION 

Super Utility Plus 3.0 is an extremely powerful utility 
package for use on TRS-80 Model I and Model III disk-based 
microcomputers. Like its predecessor, Super Utility Plus 2.2z, 
its many routines allow you, the user, to perform a great variety 
of tasks, ranging from direct examination and modification of the 
contents of a diskette to restoring an unreadable diskette to a 
usable condition. With Super Utility Plus you may also format 
diskettes in a variety of ways (including a mixed-density 
track!), backup a diskette to another using a very fast routine, 
examine a particular file on a diskette, or examine and modify 
the contents of your TRS-80's memory. 

This manual will explain the various utility routines 
available in Super Utility Plus. Please read it carefully before 
attempting to use the program for the first time. Due to its 
power and versatility, Super Utility Plus can do great damage to 
your diskettes if carelessly used. 

It is assumed in this manual that you are familiar with your 
disk operating systems' features. More information on this may be 
found in your disk operating system manual. 

# 

# 

. 

. 

. 

OVERVIEW OF SUPER UTILITY PLUS 

These are the utilities available to you in the program: 

** 

1 
2 
3 
4 
5 

Super-Utility ** Version 3.00 
(c) (p) 1983 Breeze/QSD, Inc. 

** By: Kim Watt 
Dallas, Texas . . . . . . . . . . . 

Utility Features 

Zap Utilities 6 Tape Utilities 
Purge Utilities 7 Memory Utilities 
Format Utilities 8 File Utilities 
Backup Utilities 9 Configuration 
Repair Utilities 10 Exit Program 

Selection ? # -

** 
., # 

Each selection is preceded by a number and represents a group of 
utilities. By entering the appropriate number on your keyboard, 

Copyright (c) 1982 by Breeze/QSD, Inc. 



2. SUPER UTILITY PLUS Version 3.0 

you will be taken into a further menu which will allow you to 
choose from the utilities available in that group. 

ZAP Utilities are routines which permit you to directly 
examine, modify and copy the contents of a diskette. The routines 
in this group will also permit you to search a disk for a 
particular occurrence of bytes or characters. 

PURGE Utilities will allow you to quickly and easily kill or 
recover files from a TRSDOS, LDOS or data diskette and clean up 
your directory in the process. You may optionally remove all 
traces of a file from a diskette, change the diskette name, and 
view the disk directory before and after making changes. 

DISK FORMAT Utilities are routines for formatting a diskette 
in a variety of ways. You may construct format tracks to your own 
specifications, even tracks with mixed single and double density 
sectors. You may even reformat a diskette without losing any data 
previously written on it! There is even a routine which removes 
all traces of data from a diskette, in effect bulk-erasing it. 

The BACKUP Utilities will perform standard or special backups 
of one disk onto another. The destination diskette may optionally 
be formatted before backup begins. These backup routines are very 
fast and very intelligent. 

The REPAIR Utilities will let you restore an unreadable disk 
directory or damaged boot sector to a usable condition, if at all 
possible. You may also recover files which were killed by Super 
Utility Plus, and check the disk directory for any errors which 
may result in the destruction of files later on. 

TAPE Utilities will allow you 
tape-to-tape or tape-to-memory tasks. 
supported by these routines. 

to perform 
500 baud 

a variety 
tape rates 

of 
are 

MEMORY Utilities will perform a variety of functions of the 
RAM memory of your TRS-80. You may examine the contents of 
memory, move the contents of a segment of memory to another 
location, search memory for the occurrence of a particular 
string, read a port, send a byte to a port, and transfer memory 
to disk and vice-versa. Additionally, you may also transfer to 
your own machine-language subroutine in memory. 

FILE Utilities are similar to the ZAP utilities, except that 
they are file-oriented. You may use them to view the contents of 
a file on a diskette without knowing exactly where on the 
diskette the file resides. You may compare two files for 
differences, copy files from one diskette to another, display the 
free space on a disk, display the locations of files on a disk, 
create new files, and check the status of your disk drives. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 3 

The CONFIGURATION system allows you to tailor Super Utility 
Plus to your own system. You can tell Super Utility Plus the 
characteristics of your lineprinter, if you have one, how many 
disk drives you have, and what kind of disks you expect to be 
using in each drive. You can also optionally software write 
protect a particular disk drive so that no data on it can be 
inadvertently changed. The configuration parameters may be saved 
on disk for automatic loading when the program is rebooted. 

EXECUTING SUPER UTILITY PLUS 

The Super Utility Plus program is supplied on a special 
"self-booting" diskette. Insert the Super Utility Plus diskette 
into your drive 0 and press the RESET button. The Super Utility 
Plus logo will appear on the screen while your disk drive 
continues to run. After a few seconds the disk drive will stop, 
and the logo will animate. Press any key and the program will 
bring up the main menu. 

You should be aware that during the entire loading process, 
Super Utility Plus is performing a memory test on your computer's 
RAM to ensure correct operation of the program. If the message 
"memory error" appears on the screen, you should get your 
computer's memory tested and replaced if necessary. 

Former ~ersions of Super Utility Plus would display 
program labels if you held down the left or right arrow 
during the bootup process. This version no longer has 
feature. All the program labels and register conditions 
documented in the Super Utility Plus 3.0 Technical Manual. 

the 
keys 
that 
are 

Super Utility Plus does not require the presence of a DOS 
system disk in drive 0 at all. Nor does it require the presence 
of its own disk in drive 0. Once you have successfully brought up 
the main Super Utility Plus menu, remove the Super Utility Plus 
disk from the drive and put it in a safe place. You should never 
keep the Super Utility Plus diskette in the drive any longer than 
absolutely necessary. 

Super Utility Plus is menu-driven, that is, its various 
functions are accessed through a series of menus which appear on 
your screen. By keying in the appropriate number for the routine 
you want, you will activate that particular function. Simply 

. pressing ENTER will default to the first selection on the 
displayed list. To exit a function at any time, press the BREAK 
key. To return to the main menu at any time, hold down the SHIFT 
key and press BREAK. 

If you are prompted for additional input after selecting a 
routine, you may enter requested numeric information in decimal 
(the default base), hexadecimal (by appending H after the 
number), octal (by appending the letter O or the letter Q to the 

Copyright (c) 1982 by Breeze/QSD, Inc. 



4 SUPER UTILITY PLUS Version 3.0 

number), or binary (by appending B to the number). String input 
may be typed in directly, and lower case may be used at any time. 
SHIFT-0 ("shift-zero") a~ts as a case toggle. Pressing it once 
will lock you into all capitals (upper case), pressing it a 
second time will restore upper/lower case. 

When several inputs are requested, you may enter them 
separated from each other by commas, as you would when answering 
a BASIC prompt for multiple numbers. Alternatively, the inputs 
can be separated from each other by spaces. 

In addition to the· various keyboard functions, Super Utility 
Plus has a powerful screen printer built right into the program. 
Pressing SHIFT-CLEAR at any time after the main menu has been 
brought up will cause whatever is displayed on your screen to be 
reproduced on your lineprinter. Pressing the CLEAR key alone will 
empty the printer buffer. When using the screen printer, make 
sure you release the CLEAR key before the SHIFT key.If your 
lineprinter is capable of producing TRS-80 block graphics, you 
can configure Super Utility Plus to do so; otherwise it will 
change graphics symbols to "#" signs before printing. 

The main menu presents you with the various groups of 
utilities available in the program: 

1 
2 -
3 
4 
5 

ZAP Utilities 
PURGE Utilities 
DISK FORMAT Utilities 
BACKUP Utilities 
REPAIR Utilities 

Selection? 

6 TAPE Utilities 
7 MEMORY Utilities 
8 FILE Utilities 
9 - CONFIGURATION 
10 - EXIT Program 

By entering the number to the left of each selection and pressing 
ENTER, you will be taken to a further menu which will present you 
with the various routines available under that group. Pressing 
ENTER alone will always take you to the first selection on the 
displayed menu. 

The following chapters will deal with each group of utilities 
in detail. Please read each chapter carefully and keep the manual 
handy while using Super Utility Plus. We cannot emphasize enough 
the dangers of using this program in a careless f~shion. If you 
are not sure of something, check the manual. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 5 

CONFIGURING SUPER UTILITY PLUS FOR YOUR SYSTEM 

Super Utility Plus may be configured 
easily. In the main menu, you will see a 
"CONFIGURATION." If you press the number 9 
will see a display that looks like this: 

to your system very 
selection that reads, 
on your keyboard, you 

# . ** Super-Utility+ ** Version 3.00 
(c) (p) 1983 Breeze/QSD, Inc. 

# • • • • • 
_ Configuration 

** By: Kirn Watt 
Dallas, Texas 

=>Dual=N Graphics=N Locase=Y Linefee~s=N Doubler=R Speed=N 

** 

• +:0 T3D' Ptks= 40 Rtks= 40 Dir= 17 Stp=3 Rdly=4 Wdly=4 WP=N 

# 

• D0=D Dd=D LS0=1 HS0=18 LSd=l HSd=l8 S/G=3 G/T=6 DD=I • 
• +:l T3D' Ptks= 40 Rtks= 40 Dir= 17 Stp=3 Rdly=4 Wdly=4 WP=N 
• D0=D Dd=D LS0=1 HS0=18 LSd=l HSd=l8 S/G=3 G/T=6 DD=I • 
• +:2 T3D' Ptks= 40 Rtks= 40 Dir= 17 Stp=3 Rdly=4 Wdly=4 WP=N • 
• D0=D Dd=D LS0=1 HS0=18 LSd=l HSd=l8 S/G=3 G/T=6 DD=I 
• +:3 T3D' Ptks= 40 Rtks= 40 Dir= 17 Stp=3 Rdly=4 Wdly=4 WP=N 
• D0=D Dd=D LS0=1 HS0=18 LSd=l HSd=l8 S/G=3 G/T=6 DD=I • 
• ? # -----------------------------# # 

There are several lines to the display, and you will see a little 
arrow to the left of the top line: 

=> Dual=N Graphics=N Locase=N Linefeeds=N Doubler=R Speed=N 

The arrow indicates which line is being worked on, and you can 
bring it down by simply pressing the ENTER key. 

The first four items on this line pertains to your system's 
lineprinter and its characteristics. DUAL refers to whether or 
not you want dual output on or off; if you turn it on, everything 
that appears on your screen will be sent to the lineprinter 
simultaneously. 

GRAPHICS refers to whether or not your lineprinter is capable 
of printing the TRS-80 block graphics symbols. If this is turned 
on, then Super Utility Plus will send the graphics codes out to 
your lineprinter. Otherwise, it will replace all graphics symbols 
with pound signs ("#"). 

Some printers can generate the TRS-80 block graphics, but do 
not use the same ASCII codes as the computer uses. Such printers 
must be considered as incapable of generating the graphics codes, 
since Super Utility Plus does not pdssess any ability to offset 

Copyright (c) 1982 by Breeze/QSD, Inc. 



6 SUPER UTILITY PLUS Version 3.0 

the computer's internal graphics codes to the codes that the 
printer uses. 

LOCASE simply refers to whether or not your lineprinter can 
print lowercase letters or not. If turned on, Super Utility Plus 
will send all lowercase codes as is; otherwise, lowercase codes 
will be translated to uppercase before sending to the printer. 

LINEFEEDS tells Super Utility Plus if your lineprinter 
requires linefeeds after a carriage return to move to the next 
line. Most Radio Shack lineprinters do this automatically, and 
normally this option would be left off. 

To turn the options on or off, simply enter Y (yes) for on, or 
N (no) for off, for each option. For example, if you wanted to 
set your options as follows: Dual mode on, no graphics (your 
printer can't generate them), lowercase on, linefeeds off, you 
would enter on the command line: 

? Y,N,Y,N --------------
and press the ENTER key. Note that you only have to enter the 
answers, but they must be in the correct relative position. As 
soon as you hit enter, you will see the top line change to 
reflect your answers, and the arrow ( =>) will move down to the 
next line. Invalid answers will cause the line to be prompted for 
again; no change will take place in the configuration tables. 

The next item on this line is relevant to Model I users only, 
and allows you to indicate to Super Utility Plus whether or not 
you have a Doubler (a double-density adaptor) installed in your 
machine. It is normally set to DOUBLER=R, indicating the presence 
of a Radio Shack doubler. If you do not have a doubler installed, 
you should change this to indicate N. This will prevent Super 
Utility Plus from making any attempt to read a double-density 
disk. If you have a double density board installed that is not a 
Radio Shack kit, enter X (for "Brand X"). In any case, Super 
Utility Plus can usually determine which type you have, and will 
alter this setting accordingly. 

The last item on this line is SPEED and is used to indicate 
the presence of a CPU speed-up modification. If set to Y Super 
Utility Plus will assume that your CPU is operating at high speed 
and adjust accordingly. Following the speed parameter, you may 
insert the code necessary to turn your high speed modification ON 
and OFF. There are no prompts on the configuration line for this, 
but you may enter up to 8 hexadecimal bytes each for the ON code 
and OFF code. If you enter less than 8 hexadecimal bytes, the 
string will be padded with NOPs by Super Utility Plus. For 
example, if your high speed modification was turned on by an OUT 
(0FEH) ,1 instruction and off by an OUT (0FEH) ,0 instruction, you 
could enter D3FE01 for the on code and D3FE00 for the off code. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 7 

The next lines refer to the disk drives in your system. Each 
drive is described by two lines, but only the options on the 
first line may be changed; the data on the second line for each 
drive is implied from the first. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



8 SUPER UTILITY PLUS version 3.0 

Let's take a look at the entry for drive 0: 

=>+:0 T3D' PTKS= 40 RTKS= 40 Dir= 17 Stp=3 Rdly=4 Wdly=4 Wp=N 
D0=D Dd=D LS0=1 HS0=18 LSd=l HSd=l8 S/G=3 G/T=6 DD=I 

To the left of the drive number is a plus sign. This means that 
Super Utility Plus will recognize that drive as being in the 
system. If it were a minus, then Super Utility Plus will assume 
that it is not in your system and will refuse to do any I/0 to 
it. You can change this py typing a minus sign as the first 
character in the prompt line. 

If you had only two drives, 0 and 1, for example, you might 
want to remove drives 2 and 3 from the system. In this way, if 
you should inadvertently reference drive 2 or 3, you will be 
informed that the drives are not available in the system. 

You may also specify"=", indicating that Super Utility Plus 
should operate in "SKIP" mode for this drive. This is used only 
when trying to read a 35 or 40 track diskette in an 80-track disk 
drive (NOTE: NEVER write to a 35 or 40 track diskette while it is 
in an 80-track drive. This disk may not be readable in a 35/40 
track drive afterward.) 

T3D' is a DOS SPECIFIER. This tells Super Utility Plus what 
Disk Operating System (DOS) it can expect to find in that drive. 
The DOS specifiers recognized by Super Utility Plus are as 
follows: 

DOS Model I Model III 
TRSDOS Sgl. Den. T, Tl, TS, TlS invalid 
TRSDOS Dbl. Den. TlD T3, TD, T3D 
LDOS Sgl. Den. L, Ll, LS, LlS L, LS, L3S 
LOOS Dbl. Den. LlD (SOLE system) L3, LD, L3D 
DOSPLUS Sgl. Den. D, Dl, OS, D1S D, DS, D3S 
DOSPLUS Dbl. Den. DID (system disk) D3, DD, D3D (note 1) 
MULTIDOS Sgl. Den. M, Ml, MS, MlS M, MS, M3S 
MULTIDOS Dbl. Den. MlD (system disk) M3, MD, M3D (note 1,2) 
NEWDOS80 V2 s. Den. N, Nl, NS, NlS N, NS, N3S 
NEWDOS80 V2 D. Den. NlD (Tk 0 reversed) N3, ND, N3D (note 1,3) 
DBLDOS Dbl. Den. B, Bl, BD, BlD invalid 

Note l: For model I data disks which do not have 
the single density track 0, use one of 
the Mod III codes. 

Note 2: Relative sectoring as required by 
NEWDOS80 V2 double density disks is 
specified by appending the letter R to 
the specifier, e .g •, NlDR. This is 
mandatory for correctly handling ND80 V2 
double-density systems. The R modifier 
is allowed only in MultiDOS Model I 

Copyright {c) 1982 by Breeze/QSD, Inc. 



user's Manual 

double-density 
"P-density" disks. 

to produce the 

Note 3: For NEWDOS80 V2 diskettes 
Track 0, use one of the 
Mod III specifiers~ 

with a normal 
corresponding 

9 

As you can see from the table above, the system of DOS 
specifiers used in version 3.0 of Super Utility Plus is 
considerably changed from earlier versions. Now you have a choice 
of which specifier to use, and you can select whichever is most 
meaningful for you. 

Double sided media support: Limited support for double-sided 
media 1s now available in this new release of Super Utility Plus. 
Only LDOS, DOSPLUS and MULTIDOS are supported. A double-sided 
disk is specified by appending a double-quote to the DOS 
specifier, e.g., L3D" or DD". Conversely, a single-quote appended 
to the DOS specifier indicates a single-sided disk. 

The DOS specifiers may also be used within the other routines 
of Super Utility Plus to override the configuration table 
settings without returning to the configuration routine. To 
override the current set~ing, append the required DOS specifier 
to the drive number on a prompt line. For example, when prompted 
for drive, track and sector, you might enter something like this: 

0M3D'=40,21,S 

By appending M3D to the drive number, you are tellin Super Utiity 
Plus that the disk in that drive is now a Model III 
double-density MULTIDOS disk. =40 indicates that is it formatted 
for 40 tracks. Similarly, when asked for a filespec, the 
following form can be used: 

MYFILE/BAS:3LD•=40 

to indicate that the disk containing MYFILE/BAS in drive 3 is a 
double-sided double density LDOS disk. The use of the override 
system avoids the necessity of having to return to the 
configuration routine each time you wish to scan a different disk 
type. 

PTKS=40 is the number of formatted physical tracks that Super 
Utility Plus expects to find on the diskette in drive 0. If you 
are going to put in a diskette with a different track count in 
this drive, you should change this figure. 

RTKS=40 refers to the number of relative tracks on the 
diskette. For systems that use a relative track scheme, this 
figure will differ from that of PTKS. 

Copyright {c) 1982 by Breeze/QSD, In·c. 



10 SUPER UTILITY PLUS Version 3.0 

DIR=l7 tells you which track the diskette directory is 
located. If a relative track scheme is being used, this value 
should be the relative and not the physical track location. 

STEP=3 refers to the head stepping rate of your drive 0. This 
is a coded value, and the corresponding step rates are as 
follows: 

0 5/6 milliseconds 
1 10/12 milliseconds 
2 20 milliseconds 
3 30/40 milliseconds 

A standard Radio Shack Model I disk drive is normally capable of 
stepping its read/write head from one track to the next at a rate 
of 20 milliseconds, although some may be slower (older drives 
cannot step faster than 40 milliseconds). Model III Radio Shack 
drives are for the most part capable of stepping at the fastest 
rate, 6 milliseconds. You should consult the drive's 
specifications for the correct rate. Do not specify a step rate 
faster than the drive is capable of, or you will produce I/0 
errors which can ruin your disk. If in doubt, set the step rate 
to 3 (almost all disk drives are capable uf this speed). 

RDLY=4 refers to the delay (in quarter-seconds) from the time 
a drive's motor comes on to the time when Super Utility Plus 
first attempts to read from the disk. If set to "4", there will 
be a one-second delay from motor-on to the first read attempt. If 
set to "0", there will be no delay. If you find that Super 
Utility Plus is having trouble reading your disks for the first 
time, you may need to set this delay factor to "4". 

WDLY=4, conversely, controls the amount of delay from the time 
the disk motor comes on to the time Super Utility Plus first 
attempts to write to the disk. If set to "4", Super Utility Plus 
will delay 1 second before attempting a write operation. If set 
to "2", it will wait only one-half second. Since writes are more 
critical than reads, this delay factor is controlled separately 
to ensure reliable writes to the disk. Again, if disk I/0 errors 
occur as a result of bad writes to the disk, you may wish to make 
sure this item is set to "4". 

WP=N is a "switch" which tells Super Utility Plus whether or 
not to "write-protect" your drive. If you specify "Y" to this, 
Super Utility Plus will read any diskette in that drive, but will 
not write to it. This is functionally equivalent to putting a 
write-protect tab on your diskette. 

The second line 
formatting. 

contains information about the disk's 

D0=D indicates the density of track 0. Some disks have track 0 
formatted in a different density from the rest of the disk. One 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 11 

example of this is a double-density Model I LOOS system disk to 
which the "SOLE" modification (a trademark of MISOSYS, 
Alexandria, VA) has been applied to permit it to boot up. Such a 
disk has a single-density track 0. This item will indicate S for 
single density or D for double density, and pertains to track 0 
of the disk only. 

Dd=D indicates the density of the 
for "Density of disk." This will be 
double. 

rest of the disk. Dd stands 
S for single and D for 

LS0=1 indicates the sector number of the lowest sector ON 
Track 0. TRSDOS 1.3 and 2.7DD number sectors from starting from 
l. All other systems number their sectors from 0. 

HS0=18 tells you the sector 
Track 0. For a single-density 
1.3 this will be 18. 

number of the highest sector on 
disk, this will be 9. For TRSDOS 

LSd=l indicates the sector number of th~ lowest sector on the 
rest of the diskette's tracks. This will be 1 for TRSDOS 1.3 and 
TRSDOS 2.70D, 0 for all others. 

HSd=18 is the number of the highest sector on the rest of the 
diskette's tracks. This value will be 18 for TRSDOS 1.3 and 
TRSDOS 2.70D, 9 for other single-density non-RS systems and 17 
for double density systems. 

S/G indicates the number of sectors per granule. Since the 
granule is an arbitrary unit, its size can, and indeed does, 
vary. A single density disk will have 5 sectors per granule. A 
double-density TRSDOS 1.3 and 2.7DD disk will have 3 sectors per 
granule. Double-density LOOS, DOSPLUS and MultiDOS disks use 6 
sectors per granule. 

NEWDOS80 V2 uses "lumps" instead of granules, and the size of 
a lump can vary. If you are going to work on a NEWDOS80 V2 disk 
with Super Utility Plus, your disk should be configured as 
closely as possible to the standard "granule" sizes as defined in 
the preceding paragraph. Super Utility Plus cannot correctly 
handle lump sizes that are widely different. 

G/T stands for granules per track. This value will obviously 
vary according to the way a granule's size is defined. For TRSDOS 
1.3 and 2.7DD~ this will be 6. For single density disks (TRSDOS 
and other non-RS systems) it will be 2, and for double density 
non-RS systems it will be 3 (NEWDOS80 users, consult preceding 
paragraph). 

DD indicates the type of data address marks used by 
Each disk writes one type of data address mark for 
tracks and another type for the directory track. 
operating systems except TRSDOS l.3i this will read 

Copyright (c) 1982 by Breeze/QSD, Inc. 

the disk. 
the data 
For all 

S meaning 



12 SUPER UTILITY PLUS Version 3.0 

"standard convention." For TRSDOS 1.3, it will read I for 
"inverted." 

Note that the information on 
configuration is IMPLIED from 
cannot be changed directly. Only 
be changed. 

the second line of each drive 
the first line, and therefore 
the items on the first line can 

To alter the settings, you must enter a series of answers to 
the prompt which describe your disk drive. The settings in the 
example above would have been given by this string: 

?+,T3,40,17,1,4,4,N ------
The+ is optional and indicates that the drive should be active 
in the system; the rest of it indicates that Super Utility Plus 
should expect a TRSDOS 1.3 (T3) disk with 40 formatted tracks, a 
directory on track 17, in a drive capable of stepping at 12 
milliseconds (l; see table above) requiring motor-on delays for 
both reads and writes, and that the drive should not be write 
protected. Note also that the side specifier is not entered, and 
will default to ' (single sided disk). 

If we were to changa the specifications to a single-density 
model I disk, we might enter, 

?+,TlS,35 ---------
TlS indicates that the disk in the drive will be single density 
TRSDOS 2.3, and will have 35 tracks. The rest of the information 
is the same and does not have to be entered. In most cases, it is 
also unnecessary to pre-set the directory track; Super Utility 
Plus will find it. 

If you wish to take a drive out of the system, it is only 
necessary to enter the to disable that drive -- the other 
specifications will obviously not matter. 

In general, the only things that really need to be configured 
are the lineprinter specifications, and for each drive the DOS 
type, step rate, motor-on delay, the software write-protect 
switch, and whether or not a particular drive is to be actively 
in the system. The track count and directory location of the 
disks are determined when Super Utility Plus goes to read a 
diskette in the specific drive, and will change accordingly. 
Sometimes, if you swap a disk of a different density into that 
drive, read it, and then view the configuration table, you will 
see that the table has changed to reflect the density of that 
disk. 

After you have configured Super Utility Plus' disk drive 
settings to your specifications, press ENTER once more. You will 
now be asked whether you wish to save the configuration or not. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 13 

If you reply "Y", you will be asked to mount the Super Utility 
Plus diskette in drive~- Make sure there is no write-protect tab 
on the disk. Press ENTER. Your configuration will be written out 
to the disk and will automatically be established the next time 
you boot Super Utility Plus up. 

OVERVIEW OF DISKETTE DATA STRUCTURE 

When you format a diskette using the FORMAT program from your 
system disk, information is written to the diskette in concentric 
rings called tracks. On a Model I TRS-80, each diskette is 
divided, or "formatted," into 35 tracks, or cylinders (the newer 
model I drives can be formatted to 40 tracks, but this depends on 
the operating system. TRSDOS 2.3 normally recognizes only 35}. On 
a Model III, a diskette is formatted into 40 tracks. 

Each track in turn is divided into sectors. The number of 
sectors on a track depends on the diskette's density. Model I 
TRS-80's normally format diskettes in single density unless they 
are equipped with a double density modification, in which case 
they can format either single or double density. Model III 
TRS-80s format them in double density. A single density track 
contains 10 sectors,- while a double-density track contains 18 
sectors. Note that these are the actual, physical numbers of 
sectors on a track. What the operating system CALLS them can be 
different. But whatever the density of the diskette, a sector 
will always contain 256 bytes (unless a special formatting scheme 
was used) of data plus some additional bytes of information which 
identify the sector to the computer in terms of its track and 
sector location. 

Each sector has two header fields, the ID field and the data 
field. The ID header is a 7-byte field which consists of an 
address mark, a track designator, a head designator, a sector 
number designator, a length byte, and a two-byte CRC (see below}. 
There is no separate field for a track number; this is specified 
in the as part of the header data for every sector on the track. 
The head designator is used to identify which side of a 
double-sided diskette the sector is on. 

Following the sector number is a length byte, which is an 
encoded value of the number of data bytes in the sector. TRS-80 
diskettes normally use IBM conventions, in which a 0 length byte 
corresponds to 128 bytes of data, 1 corresponds to 256 bytes, and 
so on. See the next chapter for an explanation of non-IBM 
conventions. 

The header field is placed on the diskette at format time, and 
is never altered unless the disk is reformatted. The second 
field, however, is the data field, and that is changed each time 

Copyright (c) 1982 by Breeze/QSD, Inc. 



14 SUPER UTILITY PLUS Version 3.0 

the sector is written to. This field contains the actual data for 
the sector. 

Each field (ID header and data) is preceded by a gap 
consisting of 12 bytes of FFH and 6 bytes of 00H. These bytes 
provide a physical gap between fields and between sectors, and 
are used to give the drive electronics time to turn off the 
current to the read/write head during a write, to avoid 
corrupting the following sector. 

Both ID and data fields on each sector are preceded by a data 
address mark which is used by the FDC to synchronize its clock 
with the flow of data. The address marks are also used in the 
TRS-80 disk operating systems to identify a .track as being a part 
of a directory track, or part of a data track. This is discussed 
below. 

The sectors on each track are grouped together into units 
called granules, or "9rans." A gran is the smallest unit TRSDOS 
will allocate to a diskette file. Machine-language programs, 
BASIC programs, and data files are all "files" to the system and 
are assigned granules of space on the diskette as needed. As a 
file grows (for example, in a mailing list file which is being 
added to) the DOS will assign more grans to it to hold the 
additional data. The use of this grouping prevents excessive 
thrashing around of the disk drive's read/write head and also 
allows for faster file accesses. A single-density diskette, such 
as that produced by Model I systems without the Radio Shack 
double-density adapter, will have two grans of 5 sectors on each 
track. A Model III TRSDOS double-density diskette will have six 
grans of three sectors each per track. Most double-density non-RS 
diskettes will have three granules of six sectors each per track. 

When a file is saved to disk, it may occupy several grans of 
space. It is the job of the disk operating system to keep track 
of where the file is located on the disk, and how much space it 
takes up. Sometimes a file must be broken up into several 
segments, or extents, in order to make maximum use of the 
available space on a diskette. The disk operating system keeps 
track of all this and maintains information on each file in a 
special place on the disk called the directory track. 

When you request a file, such as what happens when you issue 
the RUN "filename/ext" command from Disk BASIC, the DOS first 
goes to the diskette's directory track and looks for the file you 
specified. If it finds the file, the system then examines the 
information associated with it to find out where on the disk the 
file resides, and how long it is. Armed with this information, it 
then goes to the spot on the disk where the file begins, and 
proceeds to load it into the computer's memory. 

The directory track is "marked" off from the rest of the 
tracks on the diskette by the use of ·a special data address mark, 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 15 

or DAM. This is a piece of information written onto the disk by 
the DOS during the format process, and permits it to locate the 
directory track quickly, since it is different from the address 
marks used on the other tracks. However, the type of DAM written 
to the directory is dependent on the hardware in the machine, 
specifically, the floppy disk controller chip. The Model I uses a 
different controller chip than the Model III. This poses certain 
problems, the major one being the fact that you cannot· read a 
Model I single-density TRSDOS disk's directory on a Model III. 
Reading Model III diskettes on a Model I, however, poses no 
problems if the Model I is equipped with a double-density 
adapter. LDOS avoids this problem by using a data address mark 
for the directory track that both Model I and Model III 
controller chips can read and write. 

The directory track, then, is one of the most important parts 
of a diskette. If the directory track is damaged in some manner 
so that the operating system cannot correctly read the 
information on it, the disk essentially becomes unusable. The 
file itself is still on the disk, but the system no longer has 
any way of finding it. 

There is one other place on the disk which is vital to the 
operation of a system disk. This is the very first sector on the 
first, or outermost, track of a diskette. This sector is called 
the boot sector. On a Model I TRSDOS single-density diskette, and 
on all other non-RS systems' diskettes, this will be Sector 0 of 
Track 0; on a Model III TRSDOS diskette it will be Sector 1 of 
Track 0. When a system disk is placed in Drive 0 and the TRS-80's 
RESET button is pushed, special code in the ROMs orders the disk 
drive to move its read/write head to. track 0 and read the boot 
sector into memory (starting at 4200H for the Model I, 4300H for 
the Model III). Once the boot sector is in memory, the computer 
jumps to its starting address. This sector contains information 
which then permits the computer to read the rest of the operating 
system into memory. If the diskette is not a system diskette, the 
boot sector loads code which produces the "NO SYSTEM" notice on 
your screen. 

If the boot sector on a system disk is damaged, that disk also 
becomes unusable as a system disk, although it may still be 
possible to use it as a data disk. Super Utility Plus has the 
capability of restoring to a usable condition disks which have 
sustained damage to the directory track or boot sector, if the 
damage is not too extensive. Sometimes the damage is so 
widespread that no recovery is possible, but in many cases, a 
disk can be restored to working condition at least long enough 
for you to copy important files over onto another diskette. 

Many users who find that one of their system disks will not 
boot automatically assume that the boot sector has been damaged. 
This may not necessarily be the case. The process of bringing a 
DOS u~ to the point where it is ready to accept user input 

Copyright (c) 1982 by Breeze/QSD, Inc. 



16 SUPER UTILITY PLUS Version 3.0 

consists of several steps, and a failure at any one of these 
steps may give the impression that the boot sector is bad. It may 
be that the resident module (SYS0) has been damaged, is missing 
or is in the wrong place; or that the command interpreter (SYSl) 
is damaged or missing. users who are unaware of this process will 
simply assume that the boot sector need to be repaired, and will 
proceed to do so. But when the system still fails to come up then 
they may call us in high dudgeon demanding to know why their 
Super Utility Plus doesn't work as advertised, when in fact it 
may have done exactly what they wanted. Exactly, but no more. 

When this 
possibilities 
copying a good 
the bad one. 
running again. 

happens to you, it pays to explore other 
before assuming the program does not work. Try 

SYS0 or SYSl module from an undamaged disk onto 
That may be all you need to get the system up and 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 17 

CHAPTER 2 - ZAP UTILITIES 

Bring up the main Super Utility Plus menu as .described above, 
and press 1. You will then be presented with the ZAP Utilities 
menu. 

# . . . . . . . . . . 
• ## 

# 

Super-Utility+ ## Version 3.00 
(c) (p) 1983 Breeze/QSD, Inc. 

## By: Kim Watt 
Dallas, Texas . . . . . . . . . 

l 
2 
3 
4 
5 
6 

Zap Utilities 

Display Sectors 
Verify Sectors 
Compare Sectors 
Copy Sectors 
Copy Sector Data 
Zero Sectors 

• Selection?#_ 

# • • 

7 
8 
9 

10 
11 
12 

• . . . . . 

Reverse Sector Data 
Exchange Sectors 
String Search 
Sector Search 
Read ID Address Marks 
Alter DATA Address Marks 

# 

. 
# 

Select the routine you want by entering its number. You need 
not press <ENTER>.· 

I. DISPLAY SECTORS 

When this option is selected, you will be presented with an 
additional prompt: 

Drive, Track, Sector? 

Enter the number 
want to examine, then 
to display. Separate 
example, 

-----------
of the disk drive containing the disk you 

the track number and sector number you wish 
them from each other with a comma, for 

Drive, Track, Sector? 1,0,1 --------
and press ENTER. If you wanted to read a diskette with a 
differing track count or density on the same drive, an 
alternative form would be 1TlS=40,0,1 where TlS indicates that 
the diskette is single density TRSDOS, and =40 means it is 
formatted for 40 tracks. See the previous chapter's discussion on 

Copyright (c) 1982 by Breeze/QSD, Inc. 



18 SUPER UTILITY PLUS Version 3.0 

configuring the system for more details. If you omit the track 
and sector, you will be shown the lowest sector on the lowest 
formatted track on the disk. If you enter D for track, Super 
Utility Plus will go to the directory (you don't need to know 
where the directory is!). If you enter an up-arrow for the track, 
then you will be shown the highest configured track on that 
diskette. 

On this particular option only, you can also use two special 
symbols in front of the drive number. The first special symbol is 
a pound sign, or "t". This will cause Super Utility Plus to 
identify the diskette's density automatically, in case you are 
unsure of its density. This will work only with Display Sectors. 

The second special symbol is an exclamation mark, or "!." This 
switches in automatic DOS recognition. Super Utility Plus will 
examine the disk and determine which DOS formatted it. This 
process takes a few seconds. This option is also available at any 
other routine which reads a diskette's directory. 

The particular sector you requested will be displayed on your 
screen. It will look something like this: 

# 00#00FE 14F3 3A02 4357 1E04 CD74 4320 713A#.#.#:.CW •• #tC q: 
HEX 10#0051 E610 286E D92A 1651 557C 0707 07E6#.Q#. (n#*.QU I • •• # 
DRV 20#0767 0784 075F 21FF 51D9 CD5D 433D 200C#.g.#. !#Q##]C= . 

0 30#CD4E 43CD 5D43 7723 10F9 18EE 3D28 0BCD##NC#]Cw#.#.#=(.# 
TRK 40#5D43 47CD 5D43 10FB 18E0 CD4E 43E9 CD5D#]CG#]C.#.##NC##] 

00 50tf4347 CD5D 436F 05CD 5D43 6705 C9D9 2C20#CG#]Co.#]Cg.##, 
TRU 60#0FE5 CD74 4320 19El lC7B D612 2002 5Fl4#.##tC .#. {#. . . 

00 70#7ED9 C9C7 0605 C5CD 8E43 ClE6 1CC8 l0F6#-### •• ###C##.#~# 
SEC 80#21E6 43DD 21F4 43CD 1802 CD40 00C7 01F4#!#C#!#C# •• #@.#.# 

01 90#81ED 410D 3El8 EDSl CDDF 43D8 F0CB 4720###A.>.#Q##C###G 
STD A0#FA7B D3F2 3E81 D3F4 21D3 4322 4A40 3EC3##{##>##l!#C"J@>I 
0DD B0#3249 4021 0051 D511 02Cl 3E80 CDDF 433E#2I@!.Q# •• #>###C> 

C0#C0D3 E4DB F0A3 28FB EDA2 7AD3 F4ED A220#######(###z#### 
D0#FA18 FEEl DlAF D3E4 3E81 D3F4 DBF0 C9D3##.######>####### 
E0#F006 0Cl0 FEC9 17E8 4469 736B 2065 7272## ••• ##.#Disk err 

+00 F0#6F72 1F03 17E8 4E6F 2073 7973 7465 6D03#or ••• #No system. 

This display contains a wealth of information. The leftmost 
column contains information about the display. HEX refers to the 
current modification mode base (see below}. ORV and the number 
directly beneath it refer to the drive number just accessed. TRK 
and the number beneath it refer to the current track number, TRU 
and the number beneath it refer to the actual track number 
written on the disk, and SEC and the number beneath it is the 
sector being displayed on the screen. 

Below the 
identifies the 
when the it was 

sector number is a three-letter code which 
particular data address mark written on the disk 

formatted. Super Utility Plus will identify four 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 19 

types of data address marks: STD, or standard, DDT, or deleted 
data, RPT or "read-protected", and UDF, or user-defined. The 
terms are those used by the manufacturer of the floppy disk 
controller chip and are not necessarily meaningful except insofar 
a~ they differentiate one type of address mark from another. 
TRSDOS uses a different type of data address mark for the 
directory track than for all the other tracks on a diskette and 
this is the major difference you need to be concerned about. 

The floppy disk controller chip used by the Model III can only 
recognize two of the four types of DAMs: STD and RPT. The table 
below indicates the equivalent types for Mod I and Mod III as 
used in Super Utility Plus: 

Model 
Model 
Model 
Model 

I STD & RPT 
I DDT & UDF 
III STD 
III RPT 

= Model 
= Model 
= Model 
= Model 

III STD 
III RPT 
I STD 
I DDT 

Below the data address mark identifier the density of the 
diskette being examiried will be displayed. This will normally be 
ISD for single-d~nsity Model I diskettes and IDD for double 
density diskettes. Super Utility Plus has the capability to 
recognize the density of a diskette it is reading and switch 
between single and double density if you specify the special 11 #• 
symbol in front of the drive number. 

At the very bottom of the leftmost column of information you 
will see +0~. This indicator is used by a special feature of 
Super Utility Plus which will be explained in a later section. 

The next column gives you the relative byte numbers (in 
hexadecimal) of the data immediately to the right of the graphics 
border. "Relative byte" position simply means the position of a 
particular byte withl respect to the first position, designated 
00. Each row of the display shows 16 bytes with their values in 
hexadecimal format. Each group of four hexadecimal digits 
represents two bytes. 

The data read from the disk sector is displayed between the 
two graphics borders, and to the right of each row is the ASCII 
representation of these bytes. Values which do not represent 
displayable ASCII characters (below ASCII 32) are displayed as 
periods. Also, if you are using a machine not equipped with lower 
case, any lower case alphabetic character will be shown in upper 
case; however the HEX value will always be accurate. 

I.l Paging 

You can use the arrow keys to page across sectors. The 
right-arrow key will page forward one sector, the left-arrow key 
will page back one sector. Pressing ·the up-arrow key will take 

Copyright (c) 1982 by Breeze/QSD, Inc. 



20 SUPER UTILITY PLUS Version 350 

you to the same sector on the next higher-numbered TRACK, while 
pressing the down-arrow key will take you to the same sector on 
the next lower-numbered track (unless you are already at the 
lowest). In addition, there are a number of other paging 
controls, given in the table below. 

KEY 

Right arrow 

Left arrow 

Up arrow 

Down arrow 

TABLE 2-1 - PAGING CONTROLS 

ACTION 

pages one sector higher (or to 
the lowest sector of the next 
track if the current one is 
the last for this track) 
pages one sector lower (or to 
the highest sector of the 
preceding track if the current 
one is the lowest for this 
track) 
pages one track higher, same 
sector 
pages one track lower, same 
sector 

SHIFT-Right arrow 

SHIFT-left arrow 

pages one sector higher but 
will not leave current track 
pages one sector lower but 
will not leave current track 
displays highest sector on 
current track 

SHIFT-) 

SHIFT

SHIFT-Up arrow 

( 
SHIFT-Down arrow 

R 

T 

s 
CLEAR 

• or> 

, or< 

.number keys 0-9 

displays lowest sector on 
current track 
pages ~o the same sector on 
the highest track (defined in 
the configuration tables) 
pages to the same sector on 
the lowest track 
displays Track 0, Sector 0 
(Sector 1 on TRSDOS 1.3 and 
2.7DD. 
displays prompt for new Track, 
Sector 
displays prompt for new sector 
displays prompt for new Drive, 
Track, Sector 
pages to the next higher VALID 
sector 
pages to the next lower VALID 
sector 
displays the correspondingly 
numbered sector on the current 
track 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 

BREAK 

SHIFT-BREAK 
@ 

returns you to 
Utilities menu 
returns you to the 
enables DECRYPT 
below) 

the ZAP 

main menu 
mode (see 

21 

As you can see, the ZAP utility provides you with tremendous 
flexibility in searching through a disk. You can view any sector 
on the disk with relative ease. 

One of the most powerful commands in Super Utility Plus is the 
Lor LAST command. When you are viewing a sector and exit to the 
menu, either deliberately or accidentally, you can always return 
to the sector you were viewing by calling up the drive, track and 
sector prompt line and simply entering L. You will immediately be 
returned to the last sector you were viewing. 

The value of LAST is updated by a number of routines. When 
performing a sector comparison, the last sector in which a 
mismatch was found will update LAST. Thus if you were comparing 
two disks and wanted to scan the mismatch, you would merely press 
CLEAR to stop the routine, request DISPLAY DISK SECTORS, and when 
the prompt for drive track and sector comes up, enter the drive 
number followed by Land you will be taken to the sector where 
the mismatch occurred. 

When performing a string search (see below), the last sector 
in which a string match was found will also update LAST. 

I.2 Modifying the contents of a disk sector 

The ZAP utility gives you the powerful 
modify the contents of a disk sector. 
undertaken with great care, since careless 
a file or a disk totally useless for other 

ability to directly 
This should only be 

modification can make 
purposes. 

Display the sector you wish to modify using the instructions 
given above. Then look at the leftmost column on your screen. On 
the second row _you will see HEX displayed. Super Utility Plus' 
ZAP utility gives you the ability to modify the contents of a 
disk sector in either Hexadecimal, Decimal, Octal, Binary, or 
ASCII form. The default is hexadecimal, and this is what the HEX 
means. Press Don your keyboard, and you will see it change to 
DEC. Now press A, and ASC will be displayed, meaning that ASCII 
modifica~ion is enabled. The keys for switching the modification 
case are H for hexadecimal, O or Q for octal, D for decimal, B 
for binary, and A for ASCII. 

Press H again. Now press M. You will see a pair of flashing 
cursors appear in the data portion of the display, one in the 
hexadecimal portion, and another in the corresponding position in 
the ASCII display to the right. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



22 SUPER UTILITY PLUS version 3.0 

The cursor may be positioned anywhere in the data portion 
using the arrow keys. The right arrow moves the cursor one byte 
to the right, the left arrow moves it one byte to the left. The 
up and down arrows move the cursor up and down the rows. By 
holding down the SHIFT key and pressing one of the arrow keys, 
you can position to the far ends of the display. For example, 
pressing SHIFT and the right arrow key will position the cursor 
to the rightmost byte on that row. Pressing SHIFT and the 
down-arrow key will move the cursors to the bottom row of the 
display. The current position of the cursor, in relative byte 
format, will be displayed at the upper left of the screen. 
Pressing the CLEAR key will return the cursor to the upper left 
position (byte 00). The other positioning keys available in 
MODIFICATION MODE are given in the table below. 

TABLE 2-2 - Modification Controls 

H,D,B,O,Q,A 

SHIFT-ENTER 

Right Arrow 

Left Arrow 

Up Arrow 
Down Arrow 
SHIFT-Right Arrow 

SHIFT-Left Arrow 

SHIFT-Up Arrow 
SHIFT-Down Arrow 
CLEAR or S 

E 

G + relative byte no. 

L + numeric input 

Action 

selects modification mode base 
(Hexadecimal, Decimal, Binary, 
Octal or ASCII). This should 
be done before entering 
Modification mode. 
reset modification mode 
{permits reselection of H, D, 
O, Q, B, or A) • 
moves cursor one byte to the 
right. 
moves cursor one byte to the 
left. 
moves cursor up one row. 
moves cursor down one row. 
moves cursor to last byte on 
row. 
moves cursor to leftmost byte 
on row. 
moves cursor to top row. 
moves cursor to bottom row. 
returns cursor to relative 
byte 00 (leftmost byte of top 
row). 
moves cursor to the last byte 
of the bottom row. 
moves cursor to the specified 
relative byte location (not 
aaccttiivvee iiff iinn ASCII 
modification mode). 
moves cursor to the next 
occurence of specified numeric 
input; i.e., "L3F 0 will place 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 

+ and numeric input 

- and numeric input 

> 

< 

P + numeric input 

z 

ENTER 
BREAK 

SHIFT-BREAK 

cursor on the next occurrence 
of 3F in that sector (not 
active in ASCII modification 
mode). The numeric input MUST 
be in the current modification 
base. 
moves the cursor that many 
bytes forward from its current 
position. 
moves the cursor back that 
many bytes from its current 
position. 
insert data at current cursor 
position and move the rest of 
the data one byte to the 
right. 
delete the data beneath the 
cursor and shift the rest of 
the data one byte to the left. 
copy the byte beneath the 
cursor the specified number of 
times to the right. The 
numeric input must be in the 
current modification base. 
zeroes out display and holding 
buffer. 

terminate modification mode. 
abort modification mode, 
return to ZAP utilities menu. 
abort modification mode, 
return to main Super Utility 
Plus menu. 

Note that the keys being used in modification 
mode are the same as those used in PAGING mode, 
but have entirely different actions. 

23 

Extreme care should be taken when using the modification mode 
controls, as the result may not be what you expect. 

By typing a valid key (that is, a key valid for the current 
modification mode you are in), you will enter that value into the 
display at the current cursor location. For example, 

00 FEll 3ED0 D3F0 2102 0022 EA43 AF32 
HEX 10 CD3E 43FE 0128 0CFE 0220 E7CD 3E43 

In this case the cursor is under F0 on the first row. If you now 
enter a valid numeric digit, say 7, the first row would look like 
this: 

00 FEll 3ED0 D3 2102 0022 EA43 AF32 

Copyright (c) 1982 by Breeze/QSD, Inc. 



24 SUPER UTILITY PLUS version 3.0 

Note that the cursor has changed, and the byte you are 
modifying has temporarily disappeared. Super Utility Plus is 
reminding you that you need to enter another hex digit to 
complete the modification of that byte. Now type D. The row now 
looks like this: 

00 FEll 3ED0 D37D 2102 0022 EA43 AF32 

F0 has been replaced with 7D,. and the cursor has moved one byte 
over. 

The cursor will remain in its changed state until you have 
entered the necessary number of digits to enter a new value. This 
will vary depending on the modification base you are using. For 
example, if you are in BINARY modification, you will have to type 
in 8 binary digits before the new value appears on the display. 
If you wish to terminate the input early before entering all the 
digits, simply press ENTER. 

No matter what modification 
always appear in hexadecimal, 
equivalents on the right. 

base 
with 

you use, the display will 
the corresponding ASCII 

In ASCII modification, all keys on the keyboard except for the 
arrows, BREAK, CLEAR and ENTER are valid for input. 

Pressing ENTER terminates modification mode. You will now b~ 
presented with the prompt: 

U>pdate, R>eturn to modify, or C>ancel? 

The modified sector will be written out to disk when you press 
ENTER or explicitly choose the Update option (type U and press 
ENTER). The sector data will be written back out to disk, and 
then re-displayed. Remember, UPDATE is the default, and hitting 
ENTER alone will select it. 

If you enter R, you will be returned to the sector display, 
and the disk will not be updated. You can continue making 
modifications. The display will contain the modifications you 
have made up to that point. 

Pressing C cancels the modification session. All your changes 
will be canceled, and the sector will be re-displayed with its 
original data intact. 

I.2.1 Using the special modification controls 

While in a numeric (not ASCII) modification mode, you can use 
a number of other keys to make changes to the displayed sector 
data with ease. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 25 

The greater-than key (>) permits you to insert data into the 
display without having to retype what is already there. All the 
other bytes will be shifted one byte to the right, with the last 
one being lost. Conversely, the less-than key (<) will delete the 
byte beneath the cursor and shift all other bytes one place to 
the left to fill in the gap. The last byte, which was shifted OUT 
when you pressed">", will be brought back in. 

The G key allows you to move directly to any position in the 
displayed sector without having to use the arrow keys. Simply 
type G followed by the relative byte position you want to go to, 
and the cursor will be placed on that position. The number 
following G will be interpreted in the current modification base 
(except when the modification base is ASCII, of course). For 
example, 

00 00FE llCD C901 FD21 0000 3A02 4257 1EE4 
HEX 10 0651 CDAB 4220 5801 E650 FE50 2056 2Al6 

• 
• 
• 

60 1823 l0F6 18CA CD7E 426F CD7E 4267 C921 

The cursor is positioned at relative byte 5, which holds the 
byte 01. We want to position the cursor to relative byte 67 hex, 
which is 7E. To do this, just type G67. The cursor has now been 
positioned where we want it: 

00 00FE llCD C901 FD21 0000 3A02 4257 1EE4 
HEX 10 0651 ·9DAB 4220 5801 E650 FE50 2056 2Al6 

• 
• 

60 1823 10F6 18CA CD7E 426F CD7E 4267 C921 

The LAST variable is also updated by this command, so that if 
you reposition the cursor and later wish to return to the 
original byte, simply typing GL will get you there. The use of 
the L will allow you to reposition the cursor with a minimum of 
keystrokes. 

The+ and - keys operate in a similar fashion. Typing a + 
followed by a number in the current modification base will move 
the cursor forward that many bytes from its current position. If 
the number entered was such that it would cause the cursor to 
leave the display, the cursor will be positioned at the last byte 
of the display. Typing a followed by a number will move the 
cursor back that many bytes from its current position. 

Another handy control is L. This permits you to locate a 
particular byte on the display and position the cursor over it 
at relative byte 00, and you wanted to locate the byte whose 

Copyright (c) 1982 by Breeze/QSD, Inc. 



26 SUPER UTILITY PLUS version 3.0 

value was 21 hex. Type L21. The curer will immediately be 
positioned over relative byte 7. Now press L21 again. The cursor 
is now positioned at relative byte 6F hex, which is also 21H! 
Remember however, that like the G command, the number which 
follows Lis also interpreted in the current modification base. 

Instead of repeatedly pressing L21, however, you could also 
enter LL. The second L refers to the "last value entered" and 
would produce the same results. This is also available in the G 
command. 

For quick positioning to the start and end of the display, the 
Sand E keys are available. The S key will move the cursor back 
to the first byte on the display, while the E will move it to the 
last byte on the display. 

Sometimes you want to duplicate a certain byte a specific 
number of times. You can do this very easily with the P key. In 
the example above, suppose you wanted to replace the entire first 
row with 00. Position the cursor over the first byte, which is 
already 00, press P, and 0F. The rest of the row, 15 bytes all in 
all, have been replaced with 00 (0F hex =15 decimal). As with the 
G and L commands, if your modification base was decimal, you 
would have had to enter PlS, since the number would be taken in 
the current base. 

The S, E, G, L, +, - aqd P commands are obviously not usable 
when you are in ASCII modify mode, because in this mode all keys 
except for the four arrow keys, BREAK and ENTER are valid input. 

For zeroing out the display and the contents of the holding 
buffer, you may press z. This will immediately remove all data 
from the holding buffer and replace them with 00 bytes. 

I.3 Bit-shift operations 

While you are in paging mode, you may perform various 
bit-shift and bit-rotate operations on the displayed data. These 
operations are analogous to those performed by the Z-80 assembly 
language instructions RLCA, RRCA, SLA, and SRL. They involve 
shifting the bits of an 8-bit byte a specified number of times to 
the left or right to form a new value. In shift operations, the 
bits at the far end are usually lost, while in rotate 
instructions, the bits at the far end are "rotated" into the 
opposite end. For example, take the binary representation of the 
value 85 (decimal}: 

0 1 0 1 0 1 0 1 

To shift this byte 1 place to the right would yield the value 

0 0 1 0 1 0 1 0 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 27 

or 42 decimal. The trailing 1 bit has been lost. Shifting the 
original number left one place would give you 

1 0 1 0 1 0 1 0 

or 180 decimal. Shifting it left two places yields the binary 
value 

0 1 0 1 0 1 0 0 

which is 94 decimal. 

Rotate operations involve 
be lost at the far end into 
Using our example, 0 1 0 1 0 
one bit, the result would be 

moving the bit that would normally 
the opposite end of the bit string. 

1 0 1, If we rotate this value right 

1 0 1 0 1 0 1 0 

or 180 decimal. Rotating it left one bit yields 

1 0 1 0 1 0 1 0 

also 180 decimal! Rotating it left two bits gives us 

0 1 0 1 0 1 0 1 

bringing us right back where we started, at 85 decimal. Other 
numbers would give other results, of course. 

Shift and rotate instructions can be carried out for any 
number of places you wish, up to 7 (the width of one byte). In 
Super Utility Plus, if you wish to execute a shift or rotate 
instruction, you must first be in the paging (not modification) 
mode. The shift or rotate operations are carried out on ALL the 
displayed data bytes simultaneously. To see how this works, first 
display a sector and make sure you are in the paging mode. Now 
press@. Toward the bottom of the display at the left side, you 
will see the prompt 

DCR 

(DCR stands for "decryption" this routine can be used to 
investigate sectors which may have been encrypted either by bit 
shift, logical or increment/decrement operations.) 

To execute a Rotate Right operation, press RR followed by the 
number of places you want to rotate each byte on the display. You 
will see the bytes change as soon as you hit ENTER. To execute a 
Rotate Left operation, type RL followed by the number of places 
to rotate and press ENTER. SR followed by a number executes a 
shift right operation, and SL executes a shift left operation. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



28 SUPER UTILITY PLUS version 3.0 

In addition, this particular routine is capable of carrying 
out a variety of logical operations on the displayed data. The 
commands are listed below. Each command must be followed by a 
numeric input (the base must be properly identified by appending 
H, B, o, or Q decimal is the default -- to the number) and 
ENTER: 

A . . 
0 . . 
X . . 
+ . . 

- . . 

AND the displayed bytes with given input 
OR the displayed bytes with given input 
XOR displayed bytes with given input 
ADD the given input to each byte and 
display the result, modulo 256 
SUBTRACT the given input from each byte 
and display the result modulo 256 

You can also command the computer to increment or decrement 
the display automatically any given number of times. This may be 
useful if you wish to see if any ASCII words in the displayed 
sector have been encrypted by adding or subtracting a constant 
value to its ASCII value. 

While executing this operation, you can further tell the 
computer whether to update the ASCII side of the display only 
(the default), by entering"*" as the first character in response 
to the DCR prompt, or both the HEX and ASCII sides by entering 
":". Then you would enter an up-arrow if you wanted an increment 
operation, or a down-arrow if you wanted a decrement operation 
(you cannot do both simultaneously). Finally you can control the 
speed at which the computer updat~s the display. 

Suppose you wanted to increment the ASCII side of the display 
and view the results. In response to the DCR prompt, you would 
enter* followed by an up-arrow (for incrementing) and finally a 
decimal number from l to 255 for speed (1 is the fastest, 255 is 
the slowest). As soon as you press ENTER you will see the ASCII 
side of the display begin to change. 

You may stop this automatic operation anytime by pressing@, 
or you can pause it momentarily by pressing the spacebar. The 
display will stop updating when all the bytes reach the maximum 
value, FFH or 255 decimal. Entering a "!" makes the changes 
permanent and must be the first character of a new DCR prompt 
line. 

The +00 on the bottom left of the display is updated to show 
the amount the data bits are shifted, rotated, logically qperated 
on, or incremented/decremented by a DCR operation. Pressing ENTER 
in response to the DCR prompt will reset this number to 00. 

I.4 Error Recovery 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 29 

Should any I/0 errors occur while Super Utility Plus is 
attempting to read or write to a disk, a message describing the 
type of error encountered will be displayed, for example, 

Sector NOT FOUND! 

or 

DATA CRC ERROR! 

And you will be given an option t~ retry the I/0 operation with 
the prompt, 

R>etry, S>kip, C>ontinuous, N>onstop or Q>uit? 

You may press R to retry the I/0 operation once. If the error 
occurred as a result of some momentary condition, this is usually 
sufficient to correct the situation. However, if the error 
continues to appear, you may want to type C or N for continuous 
retries. This will force Super Utility Plus to retry the I/0 
operation until it gets it right, or CLEAR is pressed. Pressing 
CLEAR will restore the retry prompt. Also, break and shift-BREAK 
may be pressed from the keyboard to abort the operation and 
return you back to a Super Utility Plus menu. Pressing N will 
produce the same results as Continuous, but no error messages 
will be displayed. 

Pressing S will immediately bring up the sector display. 
Depending on the error encountered, this may or may not contain 
any data. If the sector could not be read at all, the display 
will contain all 00 bytes. If Super Utility Plus was successful 
in partially reading the display, some data will be present in 
the display. However, you should not assume that what is shown on 
the display is an accurate representation of the data. 

Pressing Q will abort the operation in progress and return you 
immediately to the ZAP Utilities menu. 

II. VERIFY SECTORS 

This option allows you to scan all or part of a disk for 
conditions which would produce I/0 errors. This routine does not 
check the data, but rather whether or not sectors are readable. 
You will be prompted for the drive, track and secor to verify, 
and the number of sectors to verify. The program will then 

_proceed to read these sectors and report any errors which it 
encounters. 

When errors are encountered, the program will display an error 
message followed by the prompt to R>etry, S>kip, C>ontinuous, 
N>onstop, or or Q>uit. If you press R, the program will attempt 

Copyright {c) 1982 by Breeze/QSD, Inc. 



30 SUPER UTILITY PLUS version 3.0 

to read that sector again. If it succeeds, it will continue. If 
it does not succeed, it will re~display the error message. 

Pressing C or N for continuous re-try will force the program 
to re-read the bad sector UNTIL it gets it right. If it cannot 
read the bad sector at all, you may exit by pressing CLEAR, 
BREAK, or SHIFT-BREAK depending on where you wanted to go next. 

Skip tells the program to skip the bad sector and continue. 
The program will keep an internal count of the b~d sectors 
encountered and will report the total number of bad sectors at 
the end of the operation. 

Quit simply brings the verification routine to an end at that 
point. You will be brought back to the ZAP utilities menu. 

III. COMPARE SECTORS 

This utility permits you to compare the contents of two 
different sectors and is useful if you want to verify that a 
backup operation made an exact copy. This routine will also check 
for data address mark mismatches. 

When this option is selected, you will be prompted for the 
drive, track and starting sector number of the source disk. The 
program will then ask you for the number of sectors to compare. 
When you have entered this number. you will then be prompted for 
the drive, track and starting sector location on the destination 
disk for the comparison operation. 

After this, you will be asked, "Prompt for disk mounts?" If 
you answer Y (yes), you will be told when to swap disks. This is 
especially useful when you have only one drive in which to do the 
comparison. The number of disk swaps will be determined by the 
amount of memory available to Super Utility Plus for buffer 
space. On a two-drive comparison, of course, no disk swaps are 
necessary. However, you can use the disk mount prompts on a two 
drive system to check the readability of a disk on two different 
drives, should you suspect that the drive hardware is at fault. 

IV. COPY SECTORS 

This option will allow you to copy sectors from one disk to 
another, or from one location on the disk to another. Only full 
sectors are copied. When this option is selected, you will be 
prompted for the drive, track and starting sector of the source 
disk, and the number of sectors to be copied. Then you will be 
asked for the drive, track and starting sector number of the 
destination disk. As with the COMPARE SECTORS option, you will 
then be asked if you want to be prompted for disk mounts. If you 
reply Yes, you will be told when to swap disks. If your source 
and destination drives are the same, the disks you swap must be 
the same disk type. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



us~r•s Manual 31 

The data will then be copied over to the new locations, 
leaving the original locations intact. The track and sector 
identification data will not be copied, but the correct DAMs and 
the actual contents of the sectors will be transferred. 

Note that this operation is not reflected in the diskette's 
directory. You may use this routine to copy a file from one 
location to the other, but your directory will no~ show the file 
in its new 'location. 

V. COPY SECTOR DATA 

This option will allow you to copy partial sector data onto a 
new· sector. You will be prompted for the drive, track and sector 
of the source disk, the relative byte number within that sector 
where the copy is to begin, and the number of bytes you wish 
copied. Then you will be prompted for the drive, track and sector 
of the destination disk, along with the starting byte position 
for the copy, and whether or not you want disk mount prompts. Th·e 
copy will then proceed. You will be advised upon completion of 
the routine whether any disk I/O errors occurred during the copy. 

This routine will allow you to copy from 1 to 65535 bytes of 
information to a new location of your choice. 

VI. ZERO SECTORS 

This option will totally remove the data from the specified 
sectors, setting the entire contents of the sectors to 00 and 
resetting the data address marks to STD (see table above). You 
will be prompted for. the drive, track and starting sector number 
for the operation, along with the number of sectors to zero. BE 
CAREFUL WITH THIS ROUTINE!!! Upon pressing the ENTER key the 
operation will immediately be carried out, and there is 
ABSOLUTELY NO CHANCE of recovering the data once a sector has 
been zeroed out! 

Do not use this routine to zero out director~ sectors, as the 
directory sectors will be written out with the wrong DAMs. Use 
the "Zero Unused Entries" routine in the PURGE UTILITIES menu. 

VII. REVERSE SECTOR DATA 

This routine simply takes the data of a specified sector and 
reverses it, so that the byte that as in relative position 00 is 
now in relative position FFH and so on. This routine may be 
useful in creating disk protection schemes for machine language 
programs and data. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



32 SUPER UTILITY PLUS Version 3.0 

VIII. EXCHANGE SECTORS 

This routine will exchange the data contained in one or more 
sectors with the data in another set of sectors. You will be 
prompted for the source drive, track and starting sector number, 
along with the number of sectors to exchange. Then you will be 
prompted for the destination drive, track and starting sector 
number and whether or not you want to be prompted for disk 
mounts. Upon pressing the ENTER key the data in each sector on 
the source disk will be exchanged with the corresponding sector 
on the destination disk. Upon completion of the operation you 
will be advised of any disk I/0 errors that may have occurred. 

IX. STRING SEARCH 

Up to an entire disk may be searched for a given ASCII string, 
BYTE list or WORD list (a word equals two bytes, a total of 16 
bits) using this routine. Additionally you may optionally specify 
a replacement string which the routine will insert in place of 
the target string whenever the target string is found. 

You will be prompted for the drive, track and starting sector 
for the search, and the number of sectors to search. Next, you 
will be prompted to enter the search string, and lastly, the 
replacement string (if you do not wish to perform any 
replacement, merely hit ENTER in response to this prompt}. If the 
length of the replacement string is shorter than that of the 
search string, only that portion of the search string which 
corresponds to the length of the replacement string will be 
replaced. This will permit you, for example, to search for all 
occurences of "John Brown" and change them to "Carl Brown" by 
simply giving "Carl" for a replacement string. 

If the replacement string is longer than the search string, it 
will be truncated to the length of the search string. The disk 
will then be searched, and upon completion, the location of each 
match and the total number of matches found will be displayed. 

The search string must be contained wholly within a sector; 
that is, part of it cannot reside in one sector with the rest in 
the next sector. If this is the case, the routine will not find 
it. If you suspect that this may be the case, try performing a 
search on only a portion of the string. 

To search for an ASCII string, simply enter it when prompted. 
For example, if you wanted to search for an occurence of the name 
"Jim", you would enter, 

"Jim" ------------

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 33 

in response to the prompt. Enclosing the word in double quotes 
means that you want the search to match upper and lower case 
EXACTLY. If you wanted to find occurrences of "Jim" and "JIM" you 
would enclose the search string in single quotes. Single quotes 
tells Super Utility Plus to search for the string in a 
case-independent fashion, that is, upper and lower case 
differences will not matter. 

If you wanted to find all occurrences of "Jim" and "Tim" on 
the disk, you could enter, 

•?im" --------
in response to the prompt. The "?" is a wild-card character, 
meaning, in effect, "I don't care what's in this position, match 
it with whatever's there and show it to me anyway." 

To search out BYTE values, when you are prompted for the 
search string, enter a series of values in the range 0 to 255 in 
any valid numeric base separated by commas or spaces. For 
example, 

10H,13H,CDH 

which in decimal would be 

16,19,205 

--------

-----------
Note that each element of the reply is separated from the rest 

by a comma (they may also be separated by spaces). 

The word search is slightly different. This is normally used 
to locate sixteen-bit address references in a machine language 
program. The Z-80 stores such addresses in reverse order, that 
1s, the least significant byte first, followed by the most 
significant byte. Thus, the address reference 7F42H would be 
stored in a machine language program as 42 7F. 

The word search routine assumes this to be the case, so that 
when you enter a two-byte value, it will automatically reverse 
them before starting the. search. Thus, if you wanted to find the 
two bytes 7F 42 in that exact order, you must enter them as 427FH 
or, alternatively, use the byte search mode to look for the byte 
pair 7FH,42H. Note, however, that this will not work when you are 
looking for byte pairs that end in 00, for example 3300H. The 
reason for this is that when Super Utility Plus evaluates your 
ASCII input into binary, it will skip over leading zeroes. Thus 
if you were to enter 0033H, it would be evaluated as 33H. For 
these cases you must use a BYTE search. 

The word search is specified by entering 16-bit values on the 
prompt line in any valid numeric base, although due to the 
reversal which takes place it is probably easier to use 

Copyright (c) 1982 by Breeze/QSD, Inc. 



34 SUPER UTILITY PLUS version 3.0 

hexadecimal (easier for YOU, not the computer). The values should 
be separated from each other by commas or spaces. For example, 

7F42H,CD30H,402DH ------
Notice how the bytes are grouped and separated by commas. This 
will result in a search for the bytes (in hexadecimal) 42 7F 30 
CD 2D 40 in that order. 

If you wish to specify a replacement string, you must make 
sure that the replacement string is the same length as or shorter 
than the search string, or the replacement string will be altered 
(truncated to the right length). You could specify an ASCII 
search string and then replace it with a BYTE or word string, but 
it is usually easier to enter the search and replacement strings 
in the same format. 

However, it is also possible to mix different modes in a 
single search or replacement string. That is, ASCII strings, 
byte, and words can all be placed on the same line. For example, 

"Testn,42H,79E0H,'disk' ------
is a perfectly valid string search specification. 

X. SECTOR SEARCH 

This option is useful in searching out duplicate sectors on 
one or more disks. You will first be prompted for the drive, 
track and sector number of the sector that is to form the search 
template. Then you will be asked for the drive, track, and 
starting sector number for the search, followed by the number of 
sectors to search. When the routine completes, it will display 
the total number of matches that it found, and their locations on 
the target disk. 

XI. READ ID ADDRESS MARKS 

This routine will examine a disk and identify the track and 
sector data written on the target disk. This will identify any 
false or non-standard sectors on the disk and help you determine 
just how a disk was formatted. You will be prompted for the 
target drive to examine, and the program will start reading track 
0 and present the information on the display. The information 
will scroll by very rapidly, but can be stopped at any time by 
pressing the spacebar and resumed by pressing ENTER. It may also 
be exited by pressing the BREAK key.It will advance up one track 
whenever you press the UP-ARROW and down one track when you press 
the DOWN-ARROW. Additionally, you may proceed directly to the 
highest formatted track on the disk by pressing SHIFT-Up arrow, 
or to the lowest track on the disk by pressing SHIFT-Down arrow. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 35 

If the routine encounters an unformatted track, it will 
display the error message "ID ADDRESS READ ERROR" or "TRACK NOT 
FORMATTED." 

Initially, the routine will display seven columns of 
information, as follows: 

# . . * . =It# Super-Utility + ## version 3.00 ## By: Kim Watt ## . (c) (p) 1983 Breeze/QSD, Inc. Dallas, Texas . 
# Source Track Head Sector Length CRCl CRC2 ckCRC IBM Data # . :0D= 00 00 00 14 01 EAH 32H . :0D= 00 00 00 10 01 26H F6H . :0D= 00 00 00 00 01 C9H 3DH . : 0D= 00 00 00 13 01 BFH 61H . :0D= 00 00 00 09 01 73H ASH . : 0D= 00 00 00 05 01 36H C8H . . : 0D= 00 00 00 06 01 63H 9BH . :0D= 00 00 00 02 01 AFH 5FH . : 0D= 00 00 00 15 01 D9H 03H yy y STD . :0D= 00 00 00 17 01 F9H 7FH yy y STD . :0D= 00 00 00 07 01 50H AAH yy y STD . 
# . . . . . . . . 4t 

The leftmost column is labeled SOURCE. This gives you information 
as to which drive you are reading, and the density of the disk in 
that drive. For example, :lD= 01 indicates that the disk in drive 
l is double density, and the read/write head is positioned over 
physical track 1. 

The next column is labeled TRACK, and this is the track number 
which is actually recorded on the disk. Some protected disks use 
non-standard track numbers, and if the disk you are reading is 
one of these, the track column would not necessarily agree with 
the actual track number to its left. 

The third column, HEAD, is the head number actually recorded 
on the disk. In double-sided disk drives, the head number could 
indicate which side of the disk is being read. 

The fourth column is SECTOR. These are the sector numbers as 
recorded on the disk, and will not appear in any special order. 
Sectors which are physically located side by side on a disk will 
not be numbered consecutively. Also, some protected disks will 
assign false sector numbers to prevent them from being read by 
standard operating systems. 

The next column, labeled LENGTH, is a coded indication of the 
amount of data contained in the sector. In the IBM convention 
which TRSDOS and LDOS use, a length of 00 means 128 bytes per 

Copyright {c) 1982 by Breeze/QSD, Inc. 



36 SUPER UTILITY PLUS version 3.0 

sector, and a length of 01 means 256 bytes per sector. If you are 
scanning a standard disk, this should display 01 (In the IBM 
convention, a non-zero length code multiplied by 256 will yield 
the actual number of bytes contained in the sector.). 

If the disk is not formatted with the IBM conventions, then a 
00 length byte indicates 1024 bytes per sector, and a non-zero 
length byte multiplied by 16 will yield the actual number of 
bytes in the sector. By this convention, a non-IBM length byte of 
10H (16 decimal) would be equivalent to an IBM length byte of 01. 

Note that the length code indicates the number of bytes as 
recorded on the disk's data fields; it does not necessarily mean 
that there are that many bytes actually present in the sector 
(again, this may be used by di 9k protection schemes to lay a 
false trail). 

The next two columns are labeled CRCl and CRC2. CRC stands for 
"Cyclic Redundancy Check," and the two bytes are the result of a 
lightning-fast calculation made by the floppy disk controller 
chip on the sector data. When a sector is read back in by the 
computer, the disk controller chip recalculates the CRC's and 
compares them with those recorded on the disk. If the bytes 
recorded on the disk fail to match those recalculated by the FDC, 
it signals an error condition, which normally appears on your 
TRSDOS or LDOS display as "CRC error" or "Parity error during 
read." 

Planting false CRC bytes is another 
protection experts. They will override 
insert their own bytes in piace of the 
standard operating systems to ALWAYS 
attempts are made to read their disks. 

favorite sport of disk 
the FDC's calculation and 
true CRC's, thus forcing 
signal an error when 

If you press the X key while the display is scrolling, you 
will produce an additional three columns of information on the 
screen. The first, immediately to the right of the CRC2 column, 
is labeled CKCRC. This is the result of Super Utility Plus's own 
recalculation of the CRC bytes on the basis of the actual data in 
the sector. The result is indicated by two letters. The letter to 
the left pertains to the ID field's CRC, and the letter to the 
right pertains to the data field CRC. A "Y" indicates that that 
CRC byte agrees with the FDC's recalculation, and an "N" means 
that there is a discrepancy between the recorded CRC byte and the 
actual byte arrived at by recalculating on the basis of the 
sector data. If the ID field CRC is bad, then the data field CRC 
check will appear as"*" since it is impossible to check the 
data. 

The next column, labeled "IBM," is an indicator of whether or 
not the track was formatted using IBM conventions, and will help 
you in determining the meaning of the LENGTH code. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 37 

Finally, the DATA column tells you what data address mark was 
used in formatting. This will display STD for standard, DDT for 
deleted data, RPT for "read protected," and UDF for user-defined. 
As we said before, the names do not really mean anything and are 
used simply to differentiate one type of address mark from 
another. 

The Model I floppy disk controller chip is capable of reading 
and writing all four types of data address marks, or DAM's. 
However the double-density controller of the Model III can only 
produce and recognize two types of data address marks: STD and 
RPT, even if it is reading or writing a single-density disk. This 
is why it is necessary to use the TRSDOS CONVERT program to 
transfer a Model I program from a Model I diskette to a Model III 
diskette. Consult the table above for the Model I/III 
differences. 

NOTE: when X is pressed to bring up the additional three 
columns of display, the keyboard will tend to become sluggish as 
it will not be scanned as often as when the normal display is 
scrolling past. Thus if you wish to use the arrow keys to move to 
another track, for example, it is necessary to hold these keys 
down for a couple of seconds before the desired effect is 
achieved. 

XII. ALTER DATA ADDRESS MARKS 

This routine will allow you to alter the data address marks on 
a diskette to something other than the standard marks used by 
your disk operating systems, and may be a good way to produce 
your own "protected" diskettes. You will be prompted for the 
drive, track and starting sector for the alteration, and the 
number of sectors to alter. Finally, the program will prompt you 
for the type of data address mark you wish to use. Answer S for 
standard, R for read-protected, D for deleted data, and U for 
user-defined. If you are using a Model III, please remember that 
you can only use the Sand R types. 

Again, care should be taken when using this option, as you can 
wind up with a disk that no operating system can read correctly. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



38 SUPER UTILITY PLUS Version 3.0 

CHAPTER 3 - PURGE UTILITIES 

Bring up the main menu and press P. This wi~l display the 
Purge Utilities menu: 

# . 
• ## 

# 

1 
2 
3 
4 
5 

. . . . . . . . . . 
Super-Utility+ ## version 3.00 

(c) (p) 1983 Breeze/QSD, Inc. 

. . . . . 
## By: Kim Watt 
Dallas, Texas . . . . . 

Purge Utilities 

Kill Selected Files 
Kill by Category 
Remove System Files 
Remove All Passwords 
Disk Directory 

. . . 

6 
7 
8 
9 

10 

. . 

Zero Unused Entries 
Zero Unused Granules 
Change Disk Name 
Change File Parameters 
Check Directory 

• Selection? # 

# 

. # 
** . 

# 

# 

The Purge Utilities operate mainly on the directory of your 
system or data diskettes. They provide a very fast and very 
convenient way of killing (and recovering!) files from a disk, 
and even include facilities for checking your disk directories 
for errors, and removing all traces of a file from a disk by 
zeroing out the sectors which it occupied. This last is very 
useful in maintaining security. 

I. KILL SELECTED FILES 

The first choice on the purge menu is KILL SELECTED FILES. 
This will permit you to scan the directory of a diskette and 
"tag" certain files for removal. The files are shown on the 
screen, along with a cursor. Active files are shown surrounded by 
left and right arrows {left and right square brackets on the 
Model III) and the non-active file entries (killed files) are 
shown surrounded by graphics blocks. 

Note that the KILL command of TRSDOS removes all traces of a 
file from the directory, so that you may not see any non-active 
file entries on the display. Super Utility Plus's purge routines 
do NOT remove all traces of a killed file from the directory in 
order to leave open the possibility of recovering killed files if 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 39 

needed. Similarly, other non-RS systems merely tag killed files 
as inactive rather than wiping all traces of them completely from 
a diskette directory. 

You may position the cursor at any filename by using the arrow 
keys. By pressing K while the cursor is positioned at a 
particular file, you "tag" that file for killing. You can hit 
BREAK at any time to abort this operation without doing any 
damage, since the purge operation does not actually take place 
until you give the command to write the updated directory back 
onto the disk. 

If you press C inste~d of K, you will not only kill the 
selected file, but also physically remove all traces of its entry 
from the directory. Pressing the ciEAR key at any time will zero 
out ALL unused directory entries. 

Pressing N will advance the cursor to the next filename in the 
list and is analogous to using the right-arrow to position the 
cursor. 

By pressing R while the cursor is positioned at a non-active 
file, you can restore that file to the directory as· an active 
file. However, you should exercise caution when recovering killed 
files, as other files may have overwritten parts of it. There is 
no guarantee that a recovered file is still intact, unless you 
recover it before any other write operations to the disk have 
taken place. 

If there are more files than can 
display, you may advance to the next 
up-arrow, or return to a previous 
down-arrow. 

be shown on one screen 
"page" by pressing shift 
"page" by pressing shift 

The changes to the directory are maintained in a buffer in 
memory until you press W (for "Write to disk"). At this point you 
will be asked to confirm your decision, i.e., whether you really 
want to write the changes back to the disk or not. This will give 
you a chance to change your mind. If you reply "Y", the updated 
directory is written back to the disk. If you reply "N", then all 
changes are cancelled, and the original directory on the disk is 
kept intact. 

You may also input more than one drive number, separated by 
commas or spaces, when initially asked for the drive. In this 
case, when the directory of the preceding drive is written to the 
disk, the next directory is then read in and displayed. If you do 
NOT wish to write the directory to a disk, press "A" (instead of 
"N") to advance to the next drive. Pressing A will cancel all 
changes to the current drive and read in the directory of the 
next drive. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



40 SUPER UTILITY PLUS version 3.0 

Throughout this procedure, BREAK and SHIFT-BREAK will remain 
active and will bring you to the PURGE Utilities menu or the main 
menu, respectively, if pressed. 

II. KILL FILES BY CATEGORY 

This option will permit you to kill certain classes 
from a disk with ease. You will be prompted for a drive, 
the common category. You may enter a filename extension, 
/BAS to kill all files with the /BAS extension, or /CMD 
all files with the /CMD extension. Do not forget the 
slash ("/") if you are specifying an extension. 

of files 
then for 
such as 
to kill 
initial 

WARNING: On a Model I TRSDOS 2.3 disk, and on all non-RS 
system disks, if you specify /SYS, you will kill not only all 
system files, but also the BOOT/SYS and DIR/SYS entries in the 
directory as well! This is a very easy way to make a disk TOTALLY 
unusable! If you wish to remove the system files, use the 
wild-card characters option, described in the next paragraph, or 
the "Remove System Files" option. 

You may also use a wild-card option to define a common 
category of files. Entering a letter or a group of letters alone 
will cause all files which start with that letter to be killed 
from the disk. For example, if you were to enter B, you would 
kill the files BASIC/CMD, BACKUP/CMD, BULLDOG/BAS, BEA.MIN/TXT, 
etc. If you entered BA, however, you would only kill the files 
BASIC/CMD and BACKUP/CMD. 

Finally, you may kill classes of files based on their 
attributes. You may kill all INVISIBLE files, all VISIBLE files, 
all SYSTEM files, or files with a protection level other than 0 
(no protection). However, see the caution regarding killing 
system files, above. 

To kill a class of files based on their attributes, you must 
enter a SPACE as the first character wh~n prompted for the common 
category, followed by I for invisible files, V for visible files, 
S for system files, or P for files with a protection level other 
than 0. You may enter more than one attribute, separated by 
commas or spaces. 

TRSDOS 1.3 and TRSDOS 2.7DD system files cannot be killed with 
this option, since TRSDOS does not log them in the directory in 
the same fashion as normal files. See the next option. 

III. REMOVE SYSTEM FILES 

This option is used to safely kill the 
diskette. The only input required here is the 

system files on a 
drive number (you 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 41 

may specify more than one, separated by spaces or commas}. All 
system files except for BOOT/SYS and DIR/SYS will be killed. 

Since the Super Utility Plus purge routines do not zero out 
the directory entries of killed files, these files may be 
reinstated as active files using the Restore command of KILL 
SELECTED FILES or the disk repair utility (see below}. However, 
this is safe ONLY as long as no normal disk writes (from the DOS} 
have been done to the disk (EXCEPTION: TRSDOS 1.3 and TRSDOS 
2.7DD system files cannot be restored}. 

IV. REMOVE ALL PASSWORDS 

This routine will enable you to strip the passwords from all 
files on a disk, including system files which are logged in the 
directory and invisible files. You do not have to specify any 
previously-set password. When this routine is selected, you will 
be prompted for the drive numbers containing the diskettes from 
which passwords are to be stripped. The routine will then read 
into memory the directory track of each disk in turn, strip the 
passwords from each file, and change the protection level of each 
file to 0 (full access). Other file attributes will not be 
touched. The directory track will then be written back out to the 
disk, and the -routine will proceed with the next one, if any. 

This routine will not remove the DISK master password. Only 
file passwords (both access and update} will be removed. 

V. DISK DIRECTORY 

This option will, upon input of the drive number(s}, supply 
you with the name and date on the disk, the number of tracks it 
was formatted for, the number of free granules remaining, and the 
number of free fi1e entries available in the directory. In 
addition, it will display all valid files on the specified 
diskette(s). The display will include protection level {if any}, 
and the file attributes {whether it is a SYSTEM file, an 
INVISIBLE file, or a visible file}. 

This option will work even if you do not know what DOS 
formatted the disk you wish to look at, by using a"!" in front 
of the appropriate drive number to activate Super Utility Plus's 
special DOS detect routines. Note that this process may take a 
minute or two, and it should not be used on disks created by 
operating systems not recognized by Super Utility Plus. 

For example: 

SYS0/SYS SIP=7 

Copyright (c) 1982 by Breeze/QSD, Inc. 



42 SUPER UTILITY PLUS Version 3.0 

means that the file SYS0/SYS is a system file (S), has the 
invisible attribute (I), and has a protection level of 7 (no 
access). The protection levels and their meanings are as follows: 

level 
0 
1 
2 
3 
4 
5 
6 
7 

protection 
FULL access 
KILL+ 2,4,5,6,7 
RENAME+ 4,5,6,7 
Unused 
WRITE+ 5,6,7 
READ+ 6,7 
EXECUTE+ 7 
NO Access 

You will note that each protection level implies all the ones 
below it. You will note also that protection level 3 is unused in 
the TRSDOS and LDOS operating systems. You should not assign a 
protection level of 3 to any files because the results would be 
unpredictable. Protection level 7 is assigned to system files and 
means that the user has no access to those files. 

If the disk directory has more entries than can be displayed 
on one page, the display will automatically stop. Press ENTER to 
view the next screen page. If more than one drive was specified 
at the initial prompt, the next drive's directory will be 
displayed automatically upon completion of the previous one. 

If you view a TRSDOS 1.3 or 2.7DD diskette, you will note that 
no system file names will be displayed. TRSDOS does not log the 
system files in the directory in the-normal manner, so that they 
will not be part of a normal directory listing. Instead they will 
be displayed as numbers, i.e., 

00-01-02-03-04-05-06-07-08-09-10-ll-12-13-14 

VI. ZERO UNUSED ENTRIES 

This option may be used to clean up a disk directory which has 
killed files still present, although inactive. It requires only 
the input of the drive number(s). Upon pressing ENTER, the unused 
directory entries are zeroed out. 

Since TRSDOS automatically zeroes out a directory entry when 
the KILL command is issued, the usefulness of this utility is in 
cleaning up LDOS directories and directories on which Super 
Utility Plus was used to kill off certain files. 

VII. ZERO UNUSED GRANULES 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 43 

This option may be used to remove ALL traces of killed files 
from a disk. This may be desirable when security must be 
maintained at a high level. Input the drive number(s), and the 
routine will zero out all unassigned sectors on the target disks. 
Once this utility has been run, no data recovery of any kind is 
possible for killed or inactive files. 

This facility will not touch the diskette directory. To remove 
inactive file entries, you must use the ZERO UNUSED ENTRIES 
option. 

VIII. CHANGE DISK NAME 

Some operating systems do not supply an easy facility for 
changing the names or attributes of diskettes. This option in 
Super Utility Plus will permit you to do all that. You will be 
prompted for the drive number(s). The directory will be read, and 
the DISK NAME will be displayed and you will be prompted for 
another one. If you merely press ENTER at this point, the old 
name will be retained. 

Next, the DATE on the disk will be displayed. You may supply a 
new date, or press ENTER to retain the existing one. You will 
then be prompted for a new disk master password. If you hit ENTER 
at this point, the password will be changed to "PASSWORD." 

Finally, if you are reading a system disk, you will be told if 
an AUTO command is active. If so, you may alter the auto command 
so that a different program is executed on bootup. Pressing ENTER 
will disable the AUTO command on that disk. 

IX. CHANGE FILE PARAMETERS. 

When you select this option, you will be prompted for a 
filename. After you supply one, the directory of the specified 
disk is searched for that file. If it is found, you will then be 
prompted for the new filename. Press ENTER to leave it unchanged. 
Next, you will be asked for the new ACCESS password. Pressing 
ENTER here will set it to blanks. You will then be asked for the 
new UPDATE password, and you can ei t.her supply one or also just 
press ENTER to set it to blanks. 

The routine will prompt you for the protection level next. You 
must enter a number from 0 to 7 (see the table above. Note that 3 
is an unused level and should not be given). 

Finally, you will be asked to supply the file attributes. 
Enter V if you want the file visible, I if you want it invisible, 
or S to declare it an invisible SYSTEM file (Sis not valid for 
TRSDOS 1.3 and 2.~DD). At this time the updated information will 
be written back out onto the diskette. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



44 SUPER UTILITY PLUS version 3.0 

When copying files to or from a TRSDOS 1.3 diskette to any 
other diskette, this routine will come in handy for removing the 
passwords from a specific file. TRSDOS 1.3 uses a different 
password encoding algorithm from all other systems, so a file 
which may not have passwords on one system is sure to have them 
when moved to the other! This routine will permit the removal of 
passwords from specific files only, if you do not wish to use the 
Remove All Passwords utility. 

X. CHECK DIRECTORY 

This option scans the directories on the specified drives for 
errors. You will be advised of the disk name, date, number of 
formatted tracks, number of free granules and number of free 
directory slots. In addition, you will be advised of any errors 
in the directory. Such errors may include granules allocated to 
nonexistent files, HIT table entries which do not have 
corresponding file entries, or vice versa, or improperly linked 
extended directory entries. If any such errors occur, you may 
repair the disk by selecting the disk repair utilities of Super 
Utility Plus (see below). 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 45 

CHAPTER 4 - DISK FORMAT Utilities 

Bring up the main menu by pressing SHIFT-BREAK. Now press 3 
and ENTER. You will be presented with the DISK FORMAT Utilities 
menu: 

# 

# 

. 
U= 

l 
2 
3 

. . . . . . . . . . . . . . . . . 
Super-Utility+ #i version 3.00 

(c) (p) 1983 Breeze/QSD, Inc. 
## By: Kim Watt 
Dallas, Texas 

• 
Format Utilities 

Standard Format 
Special Format 
Format Without Erase 

4 
5 
6 

• 

Build Format Track 
Write Format Track 
Software Bulk Erase 

• Selection?#_ 

• 

# . .. 

# 

• 
• 
• 
• 
# 

This group of routines permits you to format your diskettes in 
a variety of ways. All of the utilities will produce formatted 
tracks that are readable by your particular operating system, 
except for option number 5, SOFTWARE BULK ERASE, which completely 
removes all data from a disk. 

I. STANDARD FORMAT 

This option will format your target disk using the standard 
format for your operating system. You will be prompted for the 
drive number(s), the NAME for the disk, the DATE, and the MASTERR 
PASSWORD to be used on the disk. If you press ENTER to the prompt 
for the name and date, Super Utility Plus will automatically 
supply the name"* Data** Disk*" overlapping in the two (name 
an9 date) fields. Pressing ENTER in response to the PASSWORD 
prompt will cause "PASSWORD" to be used. 

Finally you will be asked if you wish to use the CONFIGURATION 
for which the system has been set. A full discussion of the 
configuration tables is in Chapter 1. Essentially, you may 
configure Super Utility Plus to recognize that certain types of 
diskettes will be found in each drive. For example, you may set 
the configuration table to recognize that drive 0 will always 
contain a MODEL III TRSDOS disk, formatted for 40 tracks, while 

Copyright (c) 1982 by Breeze/QSD, Inc. 



46 SUPER UTILITY PLUS Version 3.0 

drive 1 will always contain a single-density MODEL I DOSPLUS disk 
formatted for 35 tracks, and so on. 

If you answer 
Utility Plus will 
drive should be 
additional prompts 

"Y" to the "Use Configuration?" prompt, Super 
scan the data for the selectthe disk in that 

formatted. If you answer "N", you will get 
asking you to define the format further. 

There is a very easy way to add tracks to a diskette using the 
standard format. For example, if you wanted to turn a 35 track 
disk into a 40-track disk, without losing any data that is 
already on it, just place the disk in a disk drive and select 
standard format. Go through all the prompts until you arrive at 
the Use Configuration? prompt. Now reply "N" and press ENTER. 

A further prompt will appear, as follows: 

:d Type,Tks, Dir, St Tk? ------
where :dis the target drive. Answer the prompts. Make sure 

you give it the proper DOS type. Give "40" for the track count, 
"17" for the directory track and "35" for the St Tk (Start 
track) • 

Super Utility Plus will proceed to format the disk, starting 
at track 35 and moving up to track 39. You will then be promptr 
you want to write the directory track and boot sector. This 
prompt will appear only if the specified starting track number 
was other than 0. Reply "N." 

DO NOT REPLY •y" or a blank directory will be written to your 
disk, rendering previous files on the disk inaccessible!! 

To complete the process, check the configuration tables and 
make sure that the configuration for this drive correctly 
reflects the number of formatted tracks on the disk. Then go into 
the REPAIR Utilities menu and select the REPAIR GAT TABLE option. 
This will open up the extra tracks on your disk, and your 
35-track disk is now a functional 40 track disk with 5 extra 
tracks of space. 

This presupposes, of course, that your disk drive was capable 
of reading and writing 40 tracks in the first place. Also, in 
order to make use of the added space, your DOS must be capable pf 
recognizing that it is there and is able to make use of it. 
Adding new tracks to a 35 track with TRSDOS 2.3 will not help you 
a whit, since TRSDOS 2.3 cannot recognize more than 35 tracks on 
a disk. 

During the format, Super Utility Plus will first scan the disk 
in the target drive. If it sees something other than a blank 
disk, it will immediately display the message, 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 47 

DRIVE n has DATA! 

where n is the drive you specified for the Format operation. If 
possible, it will also display the disk's name and date.You will 
then be prompted whether you want to continue or abort the 
operation. If you elect to continue, the data on the disk will be 
overwritten. A request to abort will put you back in the DISK 
FORMAT Utilities menu. 

There are two special override commands which you can use when 
the prompt, "Use Configuration?" is displayed. The first one is 
an asterisk (*). Typing * will force the routine to format but 
NOT verify the disk. Typing ! will force an immediate format; 
that is, Super Utility Plu 0 for data, but will not check the 
directory if it does find data, proceeding with the format 
instead. 

When formatting is completed, you will be asked, "Repeat?" You 
may now take the disk from the target drive and insert a fresh 
one. Then, typing "Y" will cause the format operation to be 
repeated. Typing "N," however, will return you to the DISK FORMAT 
menu. 

If during the format process bad granules are encountered, 
these will be mapped into the track lockout table in the GAT 
sector of the directory. However, if you are formatting a disk 
which' uses a relative sector format scheme (i.e, NEWDOS80 V2 
double density or MULTIDOS P-Density) there will not be room for 
mapping bad granules in th~ GAT table. In fact, these type of 
disks do not use a lockout table in the same way as regular disks 
do. What Super Utility Plus will do in such a case is allocate 
the bad granules to prevent their use by the operating system. 
This will itart the routine, Super Utility Plus will scan each 
track, reading each sector into a buffer, then reformat each 
track and write the data back out to it. 

II. SPECIAL FORMAT 

This routine allows you to construct one or more tracks sector 
by sector, with a variety of formatting options. You can control 
the contents of the identification fields for each sector, the 
data address mark for each sector, and even the placement of 
false CRC bytes. In addition, you can construct a track with a 
mixture of single and double density sectors (providing, of 
course, that your computer is equipped with double-density). This 
routine may be used for constructing specially-formatted 
"protected diskettes." 

When you enter this routine, you will first be asked how many 
tracks you want to create. After you have entered a number, you 
will be shown a line that looks like this: 

Copyright (c) 1982 by Breeze/QSD, Inc. 



48 SUPER UTILITY PLUS Version 3.0 

TRACK 00 :SINGLE 00 DOUBLE 00 

with a prompt line beneath it. This line indicates which physical 
track and sector you are working on, and whether the sector is 
single or double density. The position of the colon indicates 
which it is. If you are going to mix densities within a track, 
you must construct all your single-density sectors first before 
going on to the double-density sectors. Once you start on a 
double-density sector there is no going back to single. 

To construct an individual sector, you must supply the routine 
with the necessary information for that sector. These are: 

Tnn 
Hnn 
Snn 
Lnn 
I or 
Ax 
Cy 

TRACK number 
HEAD number 
SECTOR number 
SECTOR length 

N IBM or Non-IBM length convention 
DATA ADDRESS MARK type 
CRC type (true or false) 

T, H, s, and L may be followed by a number, or the letter R. That 
is, you may specify which track, head, and sector number, and 
sector length, is to be associated with this physical sector. If 
you specify R instead, you will generate random numbers for the 
particular parameter you give R to. Any parameter not specified 
will default to certain values. Track and Sector specified will 
default to certain values. Track and Sector numbers will default 
to the physical track and sector number. Head number defaults to 
0, length defaults to 1. Remember that the track and sector 
numbers do not have to correspond with the physical track and 
sector numbers! In fact, each sector on a track may have a 
different track and sector number associated with it! HEAD refers 
to a byte which indicates which side of the disk this sector is 
on (Head 0 indicates the first side, Head 1 indicates the second 
side. You can use anything.). 

The L parameter is a coded value which indicates the number of 
data bytes in this sector. How it is evaluated depends on whether 
you are writing a sector using the IBM convention or not, which 
is specified by the parameter I or N. IBM is the default. Using 
IBM conventions, 0 would mean a 128-byte sector, 1 indicates 256 
bytes, 2 indicates 512 bytes, and so on. On a Model III 
double-density sector you may only specify IBM conventions. On a 
Model I single density, you may specify either IBM or Non-IBM. 
The default is IBM in all cases. However, on a Model I, when you 
switch densities, you must enter I or N to indicate IBM or 
Non-IBM for the following sectors. 

The type of data address mark to be used for this sector only 
may be specified with the letter A followed by one of four 
identifiers: S for standard DAMs, R for read-protected, D for 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 49 

deleted data, and U for user defined. For example, a 
read-protected data address marks would be specified by AR. 

The condition of the CRC bytes can also be controlled by 
entereing the letter C followed by a number from 0 to 3. The 
numbers correspond to certain conditions, given below: 

0 Normal ID and DATA CRCs (default) 
1 Correct ID field CRC, error on data CRC 
2 Correct ID field CRC, no data CRC or sector 

header written 
3 CRC error on ID field, no sector header or 

data CRC written 

Thus., to create one sector, a typical command line might be: 

T21 H0 SE0H Ll AR C0 

This line creates a single sector with the following 
information: The sector belongs to track 21, has a head id of 0, 
a sector number of E0H, an IBM-type length byte of 1, 
read-protected data address marks, and normal CRCs. The next 
sector might be created using TFFH Hl S8FH L0 AD Cl which creates 
a sector that belongs to track FFH, and has a head id of 1, a 
sector number of BFH, "deleted data" address marks, a correct ID 
field CRC but false data CRCs. 

To switch from single to double density, enter a D on the 
prompt line. This indicates to the routine that all following 
sectors created are to be in double-density. Remember that you 
cannot return to producing single-density sectors once you have 
moved to double-density. 

Pressing ENTER on a blank prompt line will advance you to the 
next physical track. As usual, pressing BREAK and shift-BREAK 
will terminate the procedure and return you to the FORMAT and 
main menus, respectively. 

Your special format track will now be residing in memory and 
can be examined using DISPLAY MEMORY. You can now load up its 
sectors with data, and finally use the WRITE FORMAT TRACK 
procedure to place it on the disk. For more details on the 

'physical structure of a formatted track, consult Appendix B. 

III. FORMAT WITHOUT ERASE 

This routine will permit you to reformat a disk without losing 
any readable data that was already on it, and is very useful for 
revitalizing disks which have been lying around for a long period 
of time. It is also a good way to repair "Sector not found" and 
"Data CRC" errors. You will be prompted for the drive number(s). 
If you specify a"!" at the initial·prompt for the drive numbers 

Copyright (c) 1982 by Breeze/QSD, Inc. 



50 SUPER UTILITY PLUS Version 3.0 

Super Utility Plus will scan the disk to see how it is formatted, 
then proceed to reformat it without destroying any data. 

When you press ENTER to start the routine, 
will scan each track, reading each sector 
memory. It will then reformat that track, and 
out to it. 

Super Utility Plus 
into a buffer in 
write the data back 

If during this process Super Utility Plus encounters a bad 
sector, it will present you with the R>etry, S>kip, C>ontinuous, 
N>onstop or Q>uit? menu. If you are trying to recover a bad disk 
through this method, use R, C or N as heavily as possible. Don't 
skip a bad sector at once. If Super Utility Plus can read the 
sector at all, it will rewrite it back out with the correct 
format, thereby repairing the error. So give the program a 
chance. It may take several minutes, but if the sector can be 
read at all, Super Utility Plus will do it -- and recover your 
data. 

IV. BUILD FORMAT TRACK/WRITE FORMAT TRACK 

These two routines will permit you to create specific 
and write them out to disk at specific locations. This 
useful for saving a the damaged track(s) will be lost, of 
but the rest of the disk will be intact. 

tracks 
may be 

course, 

The BUILD FORMAT TRACK procedure differs from the SPECIAL 
FORMAT routine in that it only constructs standard format tracks 
and requires no input from the user other than the DOS type and 
track number. When you select the BUILD FORMAT TRACK option, you 
will first be asked to specify the DOS type. Reply with one of 
the valid DOS type identifiers to create the appropriate track. 
You will then be asked what track number to assign to it. This 
should be the track number where you intend to write it out to 
the disk. 

Super Utility Plus will then create the track in memory, and 
display the message, "Press <ENTER> to view the track at nnnnH". 
By pressing ENTER, you will be able to view the track buffer in 
memory. Press BREAK to return to the DISK FORMAT Utilities menu. 

Once you have built a format track in memory, you may write it 
out to dister specifying the track number, the track in the 
memory buffer will be placed on the disk. 

You can build a track in memory with one track number, but 
write it out to another location on the disk. This is entirely 
possible, but not recommended. 

V. SOFTWARE BULK ERASE 

Copyright (c) 1982 by Breeze/QSD, Inc. 



user's Manual 51 

This utility will completely remove all data from a target 
disk and can be used to clean up a disk in place of a bulk eraser 
or magnet. If you have problems with the DOS rejecting a backup 
or a format due to "different pack IDs," this routine will solve 
that problem. You will be asked which drives are to be 
bulk-erased. Make sure they contain the proper disks! When you 
press ENTER, the disk will be overwritten completely with 00 
bytes, removing all traces of formatting and data. Take as much 
care in using this routine as you would in using a bulk eraser, 
since there is no recovery possible. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



52 SUPER UTILITY PLUS Version 3.0 

CHAPTER 5 - BACKUP UTILITIES 

There are two routines to this group: Standard Backup and 
Special Backup. Standard Backup is used on those disks which can 
be identified using one of the valid DOS specifiers. Special 
Backup is used for all others. 

I. STANDARD BACKUP 

Super Utility Plus has a very fast backup routine which can be 
used in place of the standard BACKUP/CMD of your operating 
system(s). It will work on a one-drive system as well as on a 
multi-drive system. Additionally, more than one destination drive 
can be specified, in which case, the source disk will be backed 
up to the other drives one at a time. 

When selecting this procedure, you will first be asked for the 
source drive. Enter the drive number which contains your source 
disk. Do not enter more than one source drive. You will then be 
asked for the destination drives. You may enter more than one, 
separated by commas, or spaces. 

You will next be asked if you wish to format the destination 
drives first. You may reply "Y" to format, "N" if the disk is 
already formatted, "!" to force a format even if the disk has 
data, or"*" to format and skip the verification cycle. If you 
type "Y", "!", or "*", each destination drive will be formatted 
using the configuration of the SOURCE drive. To avoid any 
problems, make sure you have configured both the source drive and 
the destination drive(s) with the same DOS specifier. Immediately 
after formatting, a full disk backup will be performed. Unlike 
the backup procedure of some systems, this backup will not skip 
any empty tracks. Nonetheless it will still be quite fast. 

If you do not wish to reformat the destination disks, merely 
reply "N" and the backup will proceed. The destination disks must 
of course have previously been formatted. 

After the source disk has been backed up to 
destination drives, you will be asked "Repeat?" Reply 
wish to do more backups, or "N" to return to the menu. 

all the 
"Y" if you 

If you backup one disk to another with a higher track count, 
as for example a 35-track disk to a 40-track disk, the backup 
disk will still reflect the availability of 40 tracks rather than 
35 as would result from using other Backup programs. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 53 

The BACKUP utility is the easiest way to recover the data from 
a disk with bad sectors. As each bad sector is encountered, you 
will be presented with the R>etry, S>kip, C>ontinuous, N>onstop 
or Q>uit prompt. Use R, Nor C whenever this happens. If the 
sector can be read at all, it will be copied over intact to the 
backup disk, thereby recovering the data. Even if not all of the 
sectors can be copied, you will still wind up with a usable (that 
is, totally readable) disk from which you can copy off as much 
useful data as you can. In addition, the original disk, bad 
sectors and all, will still be available for another try. 

II. SPECIAL BACKUP 

The special backup routine is intended for disks that do not 
conform to any of the valid DOS specifiers. This routine requires 
the input of the number of physical tracks on the target disk (or 
a reasonable estimate thereof). When ENTER is pressed, the 
program will begin scanning the source disk and building a table 
in memory of its formatting characteristics. If the routine is 
able to successfully scan the entire disk, it will then ask for a 
destination drive. The disk in the destination drive will be 
formatted using the table in memory, and the data from the source 
disk transferred. 

This routine is intended for your own personal use only in 
making backups of disks which you own. There is no guarantee made 
that the Special Backup routine will be able to duplicate every 
disk ever produced with a special format. If you encounter a disk 
which cannot be copied with this routine, please contact your 
dealer or supplier to obtain a copy. Most dealers who sell 
protected disks have a reasonable backup policy and will allow 
you to purchase a copy at a nominal fee. Please do not call us 
for updates to this routine. 

Copyright (c) 1982 by Breeze/QSD, Ind. 



54 SUPER UTILITY PLUS Version 3.0 

CHAPTER 6 - REPAIR UTILITIES 

Selection of this group from the main menu will produce the 
following menu display: 

# 
• ## 

# 

1 
2 
3 
4 
5 

. . . 
Super-Utility+ ## Version 3.00 

{c) (p) 1983 Breeze/QSD, Inc. 
## By: Kim Watt 
Dallas, Texas . . . . . . 

Repair Utilities 

Repair GAT Sector 
Repair HIT Sector 
Repair BOOT Sector 
Read-Protect Directory 
Un-Read Protect Dir 

6 
7 
8 
9 

10 

Recover Killed Files 
Move Directory 
Display Directory 
Check Directory 
Clear Unused Entries 

Selection?# 

# 

# 
## . 

# 

. 
# 

These utilities are designed to restore disks which might be 
unusable or unreadable to a usable condition, if it is at all 
possible. Many times a disk becomes unreadable because of some 
damage to the directory. If the damage is not too extensive, the 
REPAIR utilities will be able to fix it. 

In addition, the REPAIR utilities contain routines which will 
allow you to check on the condition of a directory, recover any 
files killed by the PURGE utility of Super Utility Plus, move the 
directory track from one location to another on the disk, or 
clear the unused directory entries by setting them to zero. 

I. REPAIR GAT SECTOR 

The GAT (for Granule Allocation Table) sector of a diskette 
directory is where the operating system keeps track of which 
granules have been assigned to files, which are available for 
use, and which have been locked out for one reason or another. An 
error in the GAT can result in files being allocated disk space 
which already belong to other files, thus resulting in DATA loss. 
This is the kind of creeping error which can eventually render an 
entire disk worthless. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 55 

The GAT REPAIR option will permit you to repair a bad GAT 
table. Upon entering this option, you will be asked for the drive 
number containing the disk to be repaired. You may enter more 
than one drive number if you are repairing several disks. You 
will then be asked whether you want the GAT Table only, or the 
entire sector, is to be repaired. 

If the disk name, and date are unreadable, select the ALL 
option to rebuild it. Otherwise, if the GAT table alone is 
damaged, select GAT Table repair only. This will allow you to 
retain the original disk name, date, password, and any active 
auto command. Super Utility Plus will then proceed to rebuild the 
granule allocation table of the target disk(s). 

II. REPAIR HIT SECTOR 

Each filespec in a directory is "hashed" by the operating 
system into a one-byte code and entered into the HASH INDEX TABLE 
sector, in a position which defines the fileJs actual position 1n 
following directory sectors. This permits the operating system to 
find filespecs in the directory very quickly. Errors which may 
occur here are HIT codes assigned to nonexistent files, invalid 
HIT codes, etc. Or the sector itself may have been damaged so 
that part or all of it may have been turned into garbage. 

If a directory check reveals errors in the HIT sector, you may 
use this option to repair it. The only required input is the 
drive number containing the damaged disk (you may enter more than 
one drive number). When you press ENTER, Super Utility Plus will 
proceed to reconstruct the entire HIT table. 

TRSDOS 1.3 and 2.7DD code the SYSTEM files in the last 32 
bytes of the HIT table. Because of the fact that they do not have 
any standard directory entries, these last 32 bytes will be left 
untouched by Super Utility Plus during a HIT repair, since 
without standard entries, it is not possible to reconstruct a HIT 
entry. If these bytes have been corrupted, you must use the ZAP 
utility to effect repairs. If the bytes look obviously invalid to 
you, enter FF in all 32 slots. 

III. REPAIR BOOT SECTOR 

If a system disk will not boot, the chances are that the boot 
sector has been damaged. This sector contains code which loads 
the rest of the operating system into memory, so if this.sector 
is corrupt, the rest of the DOS will not load. If this is the 
case, you can effect a repair of the boot sector by selecting 
this option. You will be prompted for the drive number containing 
the disk with the damaged boot. When you hit ENTER, Super Utility 
Plus will write the new boot routine into this sector. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



56 SUPER UTILITY PLUS Version 3.0 

Super Utility Plus contains three different boot routines, all 
of which are TRSDOS compatible, which it can use to replace a 
damaged boot sector. These boots are for a single density disk, a 
double-density disk with a single density Track 0, and for a pure 
double-density disk. The one which Super Utility Plus writes to 
your disk will depend on the DOS type you specify. The boots are 
not the same as the standard boots, but very fast routines which 
check each byte of the the resident operating system module 
(SYS0) as it loads it into memory to ensure that the load is a 
good one. 

This repair option does not log the boot in the directory (the 
operating system will already have it logged in anyway). All it 
does is write the new routine into the sector formerly occupied 
by the damaged one. 

IV. READ-PROTECT DIRECTORY 

If you try to boot a system diskette, and the disk drive seems 
to have difficulty in finding a file, or if you try to read a 
file on a data diskette and the drive seems to be hunting all 
over the diskette, or if you try to display a directory and the 
disk drives grind along for several minutes, the chances are that 
part or all of the directory was re-written using the wrong DATA 
ADDRESS MARK (Note: this can also happen if you try to read a 
single-density Model I TRSDOS diskette on a Model III machine). 
The directory track of a TRSDOS or LOOS-formatted diskette has a 
data address mark (see chapter 2) which is different from all the 
other tracks, and is used by the operating system to identify its 
location. 

Whenever the DOS tries to read a directory and finds that some 
or all of the directory sectors do not have the correct data 
address mark, it will hunt all over the disk for a track that has 
the proper DAMs. It will not find it, and so your drive sounds 
like its head keeps moving back and forth (which is exactly what 
is happening). 

READ-PROTECTING a directory is a misnomer and refers to the 
process of writing a directory track with the correct data 
address mark which can be recognized by the operating system. It 
does NOT mean changing the directory so that it cannot be read at 
all. Unfortunately, the term stuck. 

When this option is selected, you will be prompted for the 
drive number(s) containing the target disks. When you press ENTER 
Super Utility Plus will read the directory track, then write it 
back out with the correct data address marks. If it cannot find 
the directory you will be asked to specify its track location. 
You may enter the track number where the directory is located, or 
press ENTER to default to the directory track number in the 
configuration table. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 57 

If you recall the discussion of data address marks in chapter 
2, you will realize that if you try to read a MODEL I 
single-density disk in a Model III machine, your MODEL III will 
not be able to find the directory track. The reason is that the 
data address m~rk used by Model I TRSDOS (and other similar 
systems) is one that the MODEL III hardware cannot recognize. If 
this problem does not occur with anotther operating system, it is 
most likely becausethat system uses a data address mark for the 
directory track that both the Model I and Model III can 
recognize. 

This has other implications. Super Utility Plus will adapt 
itself to whatever machine it is running on. If you attempt to 
read-protect a TRSDOS 2.3 disk directory on a Model III machine, 
you will write the WRONG data address marks on the Model I disk! 
So even after you thought you had fixed the problem, now your 
TRSDOS 2.3 will be unable to locate the directory track! 

If you are going to use this option, therefore, make sure that 
you are using it on the RIGHT machine. Do 
read-protect a TRSDOS 2.3 directory track 
computer, and vice versa. This restriction does 
(see above). 

V. UN-READ PROTECT DIRECTORY 

not attempt to 
on a Model III 
not apply to LOOS 

This option takes a directory track and rewrites it using 
standard data address marks. The only input required is the drive 
number. You may want to use this routine if you are developing a 
protected disk with a directory that you do not want any standard 
operating system to be able to read. 

VI. RECOVER KILLED FILES 

This routine will allow 
using Super Utility Plus's 
recover files killed with 
the entire directory entry 
(you may, however, use it 
non-RS operating systems). 

you to recover files previously killed 
PURGE utilities. You cannot use it to 
the standard TRSDOS "KILL" command, as 
is zeroed out when a file is "KILL"ed 

to recover a file KILLed under other 

Remember .that recovering a killed file is a chancy affair IF 
you have performed any disk writes since the time you killed the 
file. In the first place, you may introduce errors into the 
directory's GAT (granule allocation table). Secondly, the file 
you recover may have had parts of it overwritten by subsequent 
files. So be· careful when using this routine. 

You will first be prompted for the drive number or numbers. 
Upon hitting ENTER, Super Utility Plus will display the disk 

Copyright (c) 1982 by Breeze/QSD, Inc. 



58 SUPER UTILITY PLUS Version 3.0 

name, date, number of formatted tracks, and number of free 
granules and free directory slots on the disk. Press ENTER again. 
You will now be shown a list of all VALID and NON-VALID (i.e., 
killed) files in the directory of the target disk. All valid 
files will be surrounded by right and left arrows (right and left 
square brackets on the Model III). Non-valid files will be 
surrounded by solid graphics blocks. 

To recover a killed file, move the cursor to the file that you 
wish to restore, using the arrow keys. Press Rand you will see 
the graphics blocks replaced by right and left arrows (or 
brackets), indicating that the file is now a valid directory 
entry. 

When you have recovered all the files you want to, press W to 
write the updated directory back onto the disk. You will be asked 
to confirm your decision. Press "Y" to confirm and write the 
directory, or press "N" to abort the procedure. 

If there are more files than can be displayed on the screen at 
one time, you can press SHIFT and UP ARROW to go the next display 
page, or SHIFT and DOWN ARROW to move to the previous page. 

VII. MOVE DIRECTORY 

This option will move the directory track to any other track 
on the target disk as long as that track is not already allocated 
to another file. You will be prompted for the drive number(s) 
containing the target disks, and the track number where you want 
the directory moved. If the track you selected is already 
allocated (either fully or partially), Super Utility Plus will 
display a message to that effect and ask you to select another 
track. Upon entering the track number and pressing ENTER the 
directory track will be moved, and the boot sector changed so 
that it now points to the new updated directory (the position of 
the directory is coded in the third byte of the boot sector). 
Also, on TRSDOS 2.3 and all LDOS disks, the DIR/SYS entry in the 
directory will be updated to reflect the directory's new 
location. 

If you wish to abort this routine, BREAK or SHIFT-BREAK will 
always take you back to the menus. 

VIII. DISPLAY DIRECTORY 

This option requires only the drive number or numbers 
containing the disks whose directories you wish to view. It will 
give you a full screen display of all active files on the 
disk(s), along with the attributes and protection levels of each 
file (protection level 0 is not displayed). In addition, the disk 
name, date, number of free granules and free space in K 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 59 

(kilobytes, units of 1024 bytes), and number of free directory 
slots are also displayed. 

If you view a Model III TRSDOS directory, you will not see any 
system file names displayed. As was discussed above, TRSDOS for 
the MODEL III does not code the system files in the directory in 
a normal manner. They will therefore be displayed as numbers, 
e.g. 

00-01-02-03-04-05-06-07-08-09-10-ll-12-13-14 

IX. CHECK DIRECTORY 

This option is designed to perform a very thorough check of 
the directory on the target disk. You will be prompted for the 
drive number. When you hit ENTER, the routine will scan the 
directory. It will then display the disk name, date, the number 
of free granules and the number of free directory slots. Any 
errors encountered will then be displayed. 

If the routine reports any GAT or HIT errors, you may use the 
GAT REPAIR or HIT REPAIR options to automatically repair the 
directory. 

X. CLEAR UNUSED ENTRIES 

This option will permit you to clean up a diskette directory 
by completely erasing the entries of any non-active files. 
Normally the entries of non-active files are left in the 
directory by systems other than TRSDOS 1.3 and 2.7DD and the 
Super Utility Plus purge routines to leave available the 
possibility of future recovery. If you use this routine, of 
course, no future recovery will be possible. 

You will normally not need to use this directory to clean up 
files where TRSDOS 1.3 or 2.7DD did the killing, since these 
TRSDOS systems remove the entries of non-active files anyway. 

This option requires only the input of 
containing the target disk(s). You may enter 
number, and the directories will be scanned 
one. 

the drive number(s) 
more than one drive 

and cleaned one by 

Copyright (c) 1982 by Breeze/QSD, Inc. 



60 SUPER UTILITY PLUS version 3.0 

CHAPTER 7 - TAPE .UTILITIES 

The TAPE UTILITIES of Super Utility Plus give you the 
following procedures: 

# . . . • . . . . . . .. . . . # 
** Super-Utility + ** Version 3.00 ** By: Kim Watt ** . (c) (p) 1983 Breeze/QSD, Inc. Dallas, Texas 

# • • • . . . . . • . • . . . . . * Tape Utilities . . 1 Read Tape 3 verify Tape . -. 2 Write Tape 4 Copy Tape • . . . Selection ? # . -. . . 
. . . . • 

# . . . . . . . . . . . . . . . . . . # 

It should be noted at the outset that these utilities do not 
provide any disk-to-tape or tape-to-disk interface. The TAPt 
UTILITIES are intended for tape-to-tape procedures. Secondly, the 
user should remember that only 500 baud cassette operations are 
supported. The higher 1500 baud tape rate of the Model III is not 
supported by Super Utility Plus. 

I. READ TAPE 

This routine will read from a tape in the first port of a 
Model I, or from the regular tape port on a Model III. When this 
option is selected, you will see the message: 

<KEY> to begin!_ 

Press the PLAY button on your cassette recorder, then press 
ENTER. The routine will begin reading the tape, and the message 
"Looking for sync byte" will appear. You may abort the operation 
at any time by pressing the CLEAR key. Once the routine picks up 
the sync byte it will start reading the data into a memory 
buffer. The data will be displayed on the screen. The actual 
ASCII character will appear on the top row, and below it, reading 
vertically, the ASCII HEX value of that character. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 61 

The read operation will continue until the end of file is 
reached, or the buffer fills. If an error occurs, you will be 
informed, and given a chance to repeat the operation. 

When an end-of-file is encountered, you will be told how many 
bytes were read in from the tape and where they are stored. You 
will also be given the checksum calculated from the data. 
Pressing ENTER at this point will take you into MEMORY DISPLAY 
mode, and you will be able to view the data that was read in. See 
the next chapter for details on the memory display routine. 

The tape read operation will 
You will be told how many bytes 
the abort, and then given a 
examine it. 

II. WRITE TAPE 

abort when the buffer fills up. 
were read in up to the time of 

chance to display the data and 

This procedure will allow you to write a tape using the data 
that is in the holding buffer. If there is no data in the buffer, 
you will be informed. Then you will be asked for a starting and 
ending address. Note that you may specify an address anywhere in 
memory, the ROM space included, and write that out to tape. When 
you press ENTER to begin the write operation, the routine will 
write the leader and sync byte, and then the data. The data is 
displayed on the screen as it is written. Again, you may abort 
the operation at any time by pressing CLEAR. 

Note that this routine will write out the data exactly as it 
finds it. No conversion to any particular format will be done; 
the routine assumes that the data is already in the proper 
format. 

At the 
the number 
a two-byte 
will bring 

completion of the tape write the routine will display 
of bytes written, the starting and ending address, and 

checksum of the data. Pressing ENTER at this point 
you back to the TAPE UTILITIES menu. 

III. VERIFY TAPE 

Selection of this procedure assumes that the data you want to 
verify has previously been read into the holding buffer with READ 
TAPE. Reposition the tape to the start of the file, press the 
PLAY key on the recorder, and press the ENTER key on the 
keyboard. The program will begin reading the tape again and will 
compare the data with whatever is in the holding buffer. The data 
will be displayed as it is read in, and discrepancies will be 
indicated with an asterisk above the offending byte. At the end 
of the verification process, you will be told how many errors 
were encountered during verification. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



62 SUPER UTILITY PLUS version 3.0 

Note that the routine has no way of knowing WHICH of the byte 
pairs compared was in error the byte read into the holding 
buffer the first time, or the byte read in during the 
yerification. It will simply report the discrepancies. 

IV. TAPE COPY 

This routine will allow you to back up a tape. You will need 
two tape recorders. The cable coming from the cassette port of 
the computer terminates in three jacks. Insert the black jack 
into the EAR plug of the source recorder. Insert the grey. 
miniature jack into the MIC input of the destination recorder, 
and the grey subminiature jack into the motor control of the 
destination recorder also. You may need to use patch cords if the 
wires are not long enough. 

Select the copy tape routine. Press ENTER. Press the PLAY 
button of the source recorder, and the PLAY and REC button of the 
destination recorder. A graphic block will appear on the screen. 
As soon as valid data is picked up, this block will begin 
flashing. 

The routine will read each byte from the source recorder, 
clean it up, and write it immediately to the destination recorder 
without storing it in memory. This should produce a byte-for-byte 
copy of the original tape. The routine will have to be manually 
terminated. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual· 63 

CHAPTER 7 - MEMORY UTILITIES 

The MEMORY Utilities of Super Utility Plus permit you to view 
and manipulate memory in a variety of ways. Many of these 
routines are very similar to the ZAP utilities, as can be ?een 
from the menu below: 

# . •· . . . • . . . . . . . . . ## Super-Utility + ** Version 3.00 ** By: Kim Watt . (c) (p) 1983 Breeze/QSD, 
# . . . . . . . Memory Utilities 

1 Display Memory . 2 Move Memory . 3 Exchange Memory . 4 Compare Memory . !:i Fill Memory 
6 Reverse Memory . 7 Test Memory 
8 Jump to Memory 

• Selection? 
# 

# 

. • 
Inc. Dallas, Texas . . . . . . . 

9 String Search 
10 Input Byte from Port 
11 Output Byte to Port 
12 Memory to Sectors 
13 Sectors to Memory 
14 Memory to Track 
15 Track to Memory 

• . # 
** . . .. • # . . 

. 

. . 

• 

# 

In addition, the memory utilities permit you to read and write 
to any I/O port from 0 to 255. You may also perform a direct 
memory-to-disk or disk-to-memory transfer. 

Great care should be taken when modifying memory in any of the 
ways made available to you from this menu. Unlike the 
modification routines in the ZAP utilities, changes to memory are 
not buffered and take effect immediately on entry. 

I. DISPLAY MEMORY 

This option requires input of the starting memory address that 
you want displayed. You may enter the address in any of the four 
number bases that Super Utility Plus will accept (Hexadecimal, 
Decimal, Octal, or Binary). The default base is Decimal. To enter 
a. hexadecimal number, you must append "H" to the number; to enter 
an octal value, append O (the letter "O" -- not zero!!!) or Q and 
to enter a binary number, append B to the number. 

The display is very similar to the ZAP display, with the 
exception that the first column of information is empty, and the 
actual addresses (in hex) are displayed in the second column, 

Copyright (c) 1982 by Breeze/QSD, Inc. 



64 

adjacent 
256 bytes 
TRS-80's 
different 

SUPER UTILITY PLUS Version 3.0 

to the actual data. The data is displayed in blocks of 
each. You can look on this display as a window into the 
memory which can be moved around so as to present 
views of the RAM or ROM "landscape." 

Using the arrow keys, you can scroll through memory. By 
pressing the right or left arrows, you can move the display 
window one by in either direction. Pressing SHIFT-right arrow or 
SHIFT-left arrow will advance or decrease the display 256 bytes 
at a time. 

Pressing up-arrow or down arrow will also move the display 
window 256 bytes at a time in either direction. However, pressing 
SHIFT-up arrow has a different effect; this will cause the 
highest 256-byte block of memory available in the computer to be 
displayed. Similarly, pressing SHIFT-down arrow will display the 
lowest 256-byte block of memory. 

Pressing the CLEAR key will cause Super Utility Plus to prompt 
for a new memory address to display. 

Pressing M will put you in Modification Mode. As in the ZAP 
utility's modification mode, you can select your input base by 
pressing H (hexadecimal), O or Q (octal), D (decimal), B (binary) 
or A (ASCII) before pressing M. The cursor may be moved with the 
arrow keys, and the action of the modification control keys are 
the same as in the ZAP utilities. See table 2-2 for the various 
keys and their actions. 

In memory modification mode, however, if you attempt to move 
the cursor past the display window, more data will simply be 
brought in, one byte at a time. If you attempt to move the cursor 
past the highest address in the computer, FFFFH, the display will 
wrap around to display 0000H. 

II. MOVE MEMORY 

This routine enables you to move a block of memory from one 
location to another. You will be prompted for the starting and 
ending address of the block to be moved, and the starting address 
where it is to be moved to. The prompt will look like this: 

Start, End, Start? ------------
If you wanted to move the bytes located at 7000H through 70EBH 

inclusive to a new location starting at AB44H, you would then 
reply as follows: 

Start, End, Start ?7000H,70EBH,AB44H ---
and press ENTER. The routine will then execute the memory 

move, and you will be advised of the-number of bytes moved. 

Copyright {c) 1982 by Breeze/QSD, Inc. 



user's Manual 65 

Be careful when moving things around in the lower 32K of 
memory, which is occupied by Super Utility Plus itself! If you 
move a block of memory into a location being used by the program, 
y6u may destroy vital parts of it and find yourself facing a 

III. EXCHANGE MEMORY 

This routine is similar to "Move memory," except that it 
actually exchanges the cont,ents of the origin and destination 
blocks of memory instead of merely copying the contents of the 
origin block over what was in the destination block. 

The prompts will be identical to Move Memory, and will request 
the starting and ending locations of the origin memory block, and 
the starting location of the destination memory block where the 
exchange is to take place. For example, if you wanted to exchange 
the contents of the block of memory in 8000H through 87FFH with 
the contents of memory at C000H, your reply would be 

Start, End, Start? 8000H,87FFH,C000H ---
And when you press ENTER, the two blocks of memory will be 
exchanged. The b1tes which resided at 8000H through 87FFH now 
reside at C000H through C7FFH, and vice versa. 

IV. COMPARE MEMORY 

This option permits you to compare one block of memory with 
another. Suppose you had executed a memory move using option l 
and wished to verify if the move was properly executed. You would 
then enter the starting and ending addresses of the original 
block and the starting address of the comparison block. 

The program will do a byte-by-byte comparison of the two 
blocks of memory and advise you of any mismatches that it finds. 
If there are many such mismatches, they will scroll past on the 
screen at a high rate of speed, but the display may be paused by 
holding down the spacebar. 

V. FILL MEMORY 

Memory may be filled with a single byte value using this 
routine. You will be p prompted for the starting and ending 
addresses of the block to be filled, and the byte value to use as 
the filler. For example, if you wanted to fill the memory 
locations from DA00H through DFFFH with the byte 0AH, you would 
enter, DA00H,DFFFH,0AH. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



66 SUPER UTILITY PLUS version 3.0 

All of the address entries have default values. The starting 
address location defaults to the first byte beyond the end of the 
Super Utility Plus program itself, and the end byte defaults to 
the top of memory. The fill byte defaults to 00. Thus, pressing 
ENTER at this prompt will zero all memory not used by Super 
Utility Plus and can be used to "clean up" memory for other 
procedures which may require use of this space (such as "Track to 
Memory" -- see below). 

Be careful when using this routine in the lower 32K of memory 
as you could wipe out a critical part of Super Utility Plus and 
cause the program to crash. You can easily determine the first 
free memory address by selecting Display Memory and hitting ENTER 
in response to the address prompt. Super Utility Plus will 
display the first 256 bytes of FREE memory. You should not do any 
FILL MEMORY function below the address on the upper left hand 
corner of the display. 

VI. REVERSE MEMORY. 

This option performs the same function as the "Reverse 
Sectors" option of the ZAP Utilities, except that it works on a_ 
block of memory rather than on a disk sector, and the area to be 
reversed is not limited to 256 bytes. You only need to enter the 
starting and ending addresses of the memory block to be reversed, 
and the routine will execute immediately. On completion of the 
routine you will be advised of how many bytes had been reversed. 

VII. TEST MEMORY 

This option will perform a test of the region of memory that 
you specify. The test is a very complete one, but will not 
disturb the previous contents of the tested addresses! After each 
byte is tested, its original contents are restored. Thus you 
could test the region of memory occupied by Super Utility Plus 
without destroying the program in memory. 

There is, however, an exception to this. You cannot test the 
actual locations from which the routine executes, or it may 
malfunction and behave unpredictably. Thus, when you select this 
option, you will see the message, 

DO NOT test between XXXXH and yyyyH !! 
Start, End? --------------

xxxxH and yyyyH are the locations where 
executes from, and altering them at the 
definitely cause unwanted results. 

the test routine 
wrong time will 

To use this 
addresses of 

routine, merely enter 
the block of memory you 

the starting 
wish to test 

Copyright (c) 1982 by Breeze/QSD, Inc. 

and ending 
and press 



User's Manual 67 

ENTER. The memory test may be stopped at any time by pressing the 
CLEAR key. 

If you attempt to test the addresses occupied by the BASIC 
ROMs (read only memories), you will get a display indicating that 
every address is bad. This is because ROMs cannot be written 
into. 

Also, if you test the video RAM on a Model I without a 
lower-case modification installed, those addresses (3C00H through 
3FFFH) will also be reported back as being bad. However, this is 
normal (the video memory on an upper-case -only Model I only has 
7 bits per byte instead of 8) and does not indicate that 
something is wrong with your video memory. 

Any errors encountered will be displayed by this routine, and 
you will be given a bit-by-bit breakdown of the problem 
addresses. 

VIII. JUMP TO MEMORY 

This option will allow you to execute a jump, or transfer of 
control, to any memory address you select~ and you need only 
enter that address. This would normally be done if you wanted to 
jump to your own machine-language subroutine in high memory, for 
example. This routine is written in such a way that a simple RET 
instruction (C9H) will bring you back into Super Utility Plus. 
However, DO NOT try jumping into random locations blindly, 
especially into the Super Utility Plus program! Know what you are 
doing before trying a jump to memory! 

IX. STRING SEARCH 

This routine will allow you to search memory for the 
occurrence of a particular ASCII string, byte string, or two-byte 
word string, and replace them with another string of your 
choosing. The routine works in the same fashion as the STRING 
SEARCH routine of the ZAP Utilities, except that this one works 
on memory, not disk. You must enter the starting and ending 
locations of the mem6ry block to be searched. Next you will be 
asked to enter the string to be searched for. 

Enter an ASCII string directly. Surround the string with 
double quotes if you want an exact case match on the search, or 
with single quotes if you want a case independent search to be 
made. To enter a byte string, enter a series of values in the 
range 0 - 255 decimal and separate them with spaces or commas. 
The values may be entered in any of the acceptable numeric bases 
recognized by Super Utility Plus. To search for two-byte WORD 
strings, enter two-byte values separated by spaces or commas. The 
two-byte values should not exceed the range 0 - 65535 decimal. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



68 SUPER UTILITY PLUS version 3.0 

Remember that the routine will reverse the order of two-byte 
words in order to correctly search out address references, which 
are kept in LSB-MSB (least significant byte - most significant 
byte) order. Also, note that leading zeroes may cause the program 
to evaluate a two-byte value into one byte. For example, 0033H 
would evaluate to 33H instead of 3300H. 

As with the search string function of the ZAP utilities, you 
may enter a search string of intermixed ASCII, one-byte values, 
and two-byte values. 

If you do not wish to replace the original string, merely 
press ENTER when prompted for the replacement string, and the 
program will display the matches as it finds them, along with 
their locations. If there are many of them, they will scroll past 
at a high rate of speed. Hold down the spacebar to temporarily 
stop the display. If the string was to be replaced, they will be 
replaced at this time. Remember that if the replacement string is 
longer than the search string, it will be truncated to the length 
to the search string. However, if the replacement string is 
shorter than the search string, only the corresponding number of 
bytes in the search string will be replaced. 

X. INPUT BYTE FROM PORT 

This option will allow you to input and display a byte from a 
hardware port. You need only supply the port number from which 
you wish to input. For example, if you wished to read the modem 
status register on your machine (port ESH) you would reply ESH 
(or 232 in the default decimal base) to the prompt, "PORT?" and 
Super Utility Plus would immediately return the value in that 
port. 

XI. OUTPUT BYTE TO PORT 

Conversely, this option permits you to send a particular byte 
out to a hardware port of your choice. You will be asked for the 
PORT number and the byte you wish output to it. Upon hitting 
ENTER, Super Utility Plus will immediately send that byte out to 
the specified port. There will be no acknowledgement. To see the 
effect of this option, hook up your cassette recorder to your 
TRS-80, press the PLAY button, and select this option. In 
response to the PORT,BYTE? prompt, enter FFH,4 (ECH,2 for the 
Model III). You will see that the cassette recorder's motor has 
been turned on. To turn it off, enter FFH,0 (ECH,0 for Model 
I I I) • 

XII. MEMORY TO SECTORS 

Selection of this option will allow you to write out to disk a 
block of memory. It requires that you input the starting byte of 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 69 

the block of memory you wish to move to disk, and whether the 
sector to be written is to be in IBM format or not (see the 
discussion of data address marks in chapter 2). You will then be 
asked to supply the drive number, the track number and starting 
sector to be written on your disk. Finally you will be asked how 
many sectors are to be written. 

If you specified IBM format, then sectors consisting of 
256-byte memory blocks will be written to disk, starting at the 
address which you specified. 

Memory saved to the disk this way is NOT noted in the disk's 
directory, so it will remain invisible to the DOS unless you make 
an entry in the diskette's directory for it. However, assuming 
that you remember the locations on the disk where you wrote it 
out; you may reload the sectors back in~o memory using Super 
Utility Plus (see the next option). 

XII. SECTORS TO MEMORY 

This option permits you to read in any sectors from disk into 
a specified region of memory in your TRS-80. You must know the 
locations on the disk which you want to load, and you must also 
know where in memory you want to load the data. There are three 
prompts under this option. The first is 

Drive, Track, Sector? -----------
Enter the drive number, track number, and starting sector number 
that you wish to load into memory. You will then be asked, 

Sector count? -----------
Enter the number of sectors ·you wish to read into memory. If you 
attempt to load more sectors than your memory can hold, Super 
Utility Plus will detect this and load only what it can. You will 
be informed of how much was actually read into free RAM. 

Finally, you are asked, ADDRESS ? _____ - Here you must 
enter the starting memory address that you wish to load the 
sectors into. If you wished to load the sectors into memory 
starting at address A000H, you would reply A000H and press ENTER. 
This should normally be defaulted by pressing ENTER, however, 
since the default value will point to a safe area in memory away 
from any region used by Super Utility Plus. 

Upon pressing ENTER to the ADDRESS prompt, the disk sectors 
you specified will be read into memory. You will then be informed 
whether or not any sectors could not be loaded (this would happen 
if there was a flaw on the disk). Then you will be given the 
message, PRESS <ENTER> TO DISPLAY. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



70 SUPER UTILITY PLUS Version 3.0 

Pressing ENTER will immediately display the region of memory 
that was just loaded from disk, in the DISPLAY MEMORY format. In 
effect you will be in DISPLAY MEMORY mode, and you may carry out 
any operations that are available to you in that mode. You can 
exit back to the menu by pressing BREAK, or to the main menu with 
SHIFT-BREAK. 

XIII. MEMORY TO TRACK 

This option will permit you to write a section of memory out 
to the disk as ONE track. You are asked to input the starting 
address in memory for the write operation, the drive number, and 
the track number to be written. A track's worth of data starting 
from the address which you specified will be written out to disk. 

BE CAREFUL WHEN USING THIS OPTION!!! This procedure assumes 
that you have constructed in memory an image of a formatted disk 
track, which not only consists of the data to be written, but 
also the actual formatting information that the DOS (and Super 
Utility Plus itself!) needs to read it. This includes not just 
the actual sector data but also the track ID fields, the sector 
ID fields, the CRC bytes and the inter-sector gap bytes. If any 
of these are not present or are incorrectly positioned, you will 
have constructed a totally unreadable track on your disk with NO 
way to read it back in. It is strongly suggested that if you do 
not have any experience in constructing format tracks, that you 
do not attempt to use this option unless there is valid track 
data in memory already, created by the "Build Format Track" 
utility. 

XIV. TRACK TO MEMORY 

This option will read a full track of data into memory, 
including all formatting information such as sync fields, data 
address marks, gaps, etc. You will be asked to input the drive 
number and track number where you want to start examining. Then 
you will be asked whether you want the floppy disk controller to 
synchronize on the ID address marks during the read or not. This 
means that the controller chip will start its accumulation of 
data at the data address marks rather than elsewhere. If you want 
this option, reply "Y" otherwise reply "N". · 

An entire track of information will be transferred from the 
disk into a holding buffer in memory, and you will be informed 
where it is located. You may view the data by pressing ENTER. 
This will also put you in DISPLAY MEMORY mode, with all the 
operations described above available. 

Experienced programmers can use this option to create 
protected tracks on a disk, for example, by changing the CRC 
bytes on each sector so that a standard DOS will always signal an 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 71 

error, or changing the actual track numbers or sector numbers so 
that the DOS will not be able to read the track at all. The 
altered track can be written back out to disk with the MEMORY TO 
TRACK option, above. However, this exercise should not be 
undertaken lightly by people who have little experience with disk 
formatting. You could create an unreadable disk otherwise. 

To see the difference between this procedure and the DISPLAY 
DISK SECTORS procedure in the ZAP utilities, use this option to 
read in the directory track of a TRSDOS disk and examine it. Then 
examine the same track using the DISPLAY DISK SECTORS option and 
you will see the difference. The DISPLAY DISK SECTORS procedure 
does not show you the formatting information written on the disk. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



72 SUPER UTILITY PLUS version 3.0 

CHAPTER 8 - FILE UTILITIES 

The final group of routines available in Super Utility Plus 
are the FILE Utilities, selected by pressing 8 at the main menu. 
These routines operate very much like the ZAP utilities, except 
that they are file oriented rather than disk-oriented. This means 
that if you display a file using the FILE Utilities, you will be 
able to view all of that file even though it may be in two or 
more segments located at different places on the disk. The FILE 
Utilities use the file information maintained in the diskette's 
directory to know where to find the file. Of course, this also 
means that you cannot use the FILE Utilities to examine a file on 
a disk with a non-standard or missing directory. 

The available utilities in this group are as shown 
menu: 

# . . • . . . . . . . . • . . . ** Super-Utility + ** version 3.00 ** By: Kim Watt 
(c) (p) 1983 Breeze/QSD, Inc. Dallas, Texas 

# • . . . . . • . File Utilities 

1 Display File Sectors . 2 Compare Files . 3 Copy Files . 4 Disk Directory . 5 Free Space . 6 Offset File . 7 File Locations 

• Selection? 
# 

#_ 

I. DISPLAY FILE SECTORS 

. • . . . . . • • . 

8 Drive Status 
9 Sector Allocation 

10 Build File 
11 Clear File 
12 Disk Allocation 
13 Compute Hash Code 
14 Compute Passwords 

on the 

. . # 
** . . . . # . 

. 

. 
# 

This option requires the input of the filename that you wish 
to see. Do not forget extensions and drive numbers when entering 
the specification. Super Utility Plus will search its directory 

.when you press ENTER. If it finds the file, it will display the 
following information: 

END OF ALLOCATION SECTOR NUMBER (EOA) - Since a standard DOS 
allocates disk space in granules, it often happens that a file 
will not completely fill up the last granule allocated, so that 
one or two sectors are allocated to·it but are actually empty. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 73 

The EOA number displayed by Super Utility Plus refers to the last 
sector of the last granule allocated to that file by the 
operating system. 

END OF FILE SECTOR NUMBER (EOF) - This is the LAST sector of 
the file which actually contains file data. It may or may not 
agree with the EOA number, but will normally be within the last 
allocated granule. 

Super Utility Plus will then prompt you for your 

CHOICE? 

This refers to your CHOICE of which sector in the file to view. 
You need to enter your choice in relative sector form, that is, 
the first sector of the file is Sector 0, and so on. If you wish 
to begin viewing the file from the first sector, merely press 
ENTER; otherwise enter the sector number you wish to see. To go 
to the EOF sector, enter "E"; to go to the EOA sector, enter "A". 
Pressing the CLEAR key will allow you to select another sector to 
view. 

TABLE 8-1 - FILE UTILITIES PAGING CONTROLS 

Right or Up arrow 

Left or Down arrow 

Sh-right or Sh-up arrow 

Sh-left or Sh-down arrow 

CLEAR 

E 

BREAK 

Shift-BREAK 

@ 

Action 

pages to the next higher sector 
of the file 

pages to the next lower sector 
of the file 

displays last allocated sector 
of the file 

displays initial sector of the 
file 

requests 
display 

displays 

Returns 

Returns 

Enables 
chapter 

new relative sector to 

end-of-file sector 

to File Utilities menu 

to main menu 

DECRYPT 
2). 

mode (see 

Copyright (c) 1982 by Breeze/QSD, Inc. 



74 SUPER UTILITY PLUS version 3.0 

The arrow keys are used to page through the file. The right 
and left arrows or the up and down arrows may be used (in this 
routine the up and down arrows perform the same function as the 
right and left arrows) to go through the file one sector at a 
time. If you attempt to page beyond the limits of the file, you 
will be given an error message. 

At any time, you may enter Modification Mode by selecting your 
input base (H for hexadecimal, D for decimal, B for binary, O or 
Q for Octal, or A for ASCII) and then pressing M. All the 
modification controls available in the DISPLAY DISK SECTORS 
routine of the ZAP utilities are available to you, including the 
bit-shift operations (activated by pressing the "@" key). See 
Table 2-2. 

The screen display of DISPLAY FILE SECTORS is very similar to 
that of the DISPLAY DISK SECTORS; however, the leftmost column of 
information is different, as you can see below: 

P00 8B20 B1C9 3A40 38E6 04C8 ElC3 3752 3211 . •• : @8 •.••. 7R 2. 
HEX Vl0 55AF C33A 0102 0055 55E5 21CA 58D5 C5CD U •• : ••• UU • ! . X • •• 
DRV U20 6744 3AC6 52B7 2807 3E00 F6C0 CD09 4421 gD: .R. ( .> ••••• D! 

1 /30 AD58 CD67 4406 0121 005B CD40 00DA 3752 • X. g D •• ! • [ • @ •• 7R 
TRK C40 7ECD 8B55 FE53 2806 FE52 20E3 F601 ClDl - •• U.S( •• R ..... 

15 M50 ElC0 E5D5 2100 00ED 5B5D 55B7 ED52 DlEl .... ! ... []U •• R •• 
TRU D60 C8E5 2100 0072 2373 FDCB 0366 2802 CBFE .. ! .• r:fts • •• f( ••• 

15 70 2322 4B55 2100 0023 225D 55El AFC9 E5CD * "KU ! .. :fl: II ] u ••••• 
SEC 80 7E55 60E5 79D6 30CD 7E55 79FE 3020 023E -u'.y.0.-uy.0 • > 

15 90 20El 4844 ElC9 0E30 D60A 3803 0Cl8 F9C6 .HD ••• 0 •• 8 ••••• 
STD A0 3A47 C9FE 61D8 FE7B D0E6 5FC9 FD7E 07E6 :G •• a •• { •. -.. . . 
!DD 80 1F3C FDCB 046E 2801 87FD CB03 5EC8 C54F • < ••• n( •• • -:-.,.._ •• 0 
FPDE C0 FD7E 070F 0F0F 0F0F 3C47 AF81 10FD ClC9 • - ••••• • <G • ••••• 
RSEC D0 3A04 00FE 302A 1144 2803 2A49 4025 2E00 : ••• 0*.D(.*I@% •• 
0003 E0 1100 5D87 ED52 D85C 5565 0680 1910 FD22 •• ] •• R.\Ue ••••• " 
+00 -F0 3D55 AFED 6222 5D55 22DF 5421 005D 224B =U .• b II] u II • T ! . ] "K 

The leftmost column of information first gives you the current 
modification mode base. Then it displays the drive number, the 
track number, and the sector number being displayed. Then it 
displays the data address mark type that it found on the disk 
(see chapter 2 for details) along with the density of the disk -
!SD for single-density, IDD for double-density. At the bottom, 
you will see three lines that look like this: 

FPDE 
RSEC 
0000 

FPDE stands for "File Primary Directory Entry." Here it means 
that the sector you are viewing is allocated in the file's 
primary directory entry. If it said FXDE, then the sector you are 
viewing is allocated in the one of the file's extended directory 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 75. 

entries. TRSDOS 1.3 and 2.70D do not use FXDE's, so this message 
should never appear if you are scanning a disk formatted by 
either one of these two systems. 

RSEC stands 'for Relative Sector. The value then displayed on 
the third line is the relative sector being displayed as taken 
from the directory information for that file. 

Next to this column is a single vertical column which displays 
the NAME of the file being viewed, for example, 

B 
A 
s 
I 
C 
I 
C 
M 
D 

Toward the bottom of this column, you will see one of three 
symbols:-,+, or@. The minus sign ("-") indicates that you have 
not yet reached the EOF· sector of the file; The pl us sign ( "+") 
indicates that you have already passed the EOF sector and are 
viewing a sector that was allocated to the file but not used by 
it. The@ symbol indicates that you are viewing the EOF sector 
itself. Whenthis symbol appears, there will be a hex number 
above it, viewed vertically. This is the first available byte 
after the end of the file itself. The last byte of the file would 
be the one preceding this byte. 

If this number is 00, it means that the last byte of the file 
was at relative byte FFH of the preceding sector. 

TRSDOS 1.3 and 2.70D system files need to be handled slightly 
differently in order to be viewed. This is due to the lack of a 
standard directory entry for the system files. If you want to 
view a, system file on either of these two systems, ,for example 
SYSS, and the TRSDOS disk is on drive 1, reply to the prompt as 
follows: 

FILENAME? *05:1 ------
If. the file is inactive in the directory 

killed), a "File not found" message will be 
wjll work only for DISPLAY FILE SECTORS and 
and 2.7DD system disks. 

(that is, it has been 
issued. This format 
only for TRSDOS 1.3 

If a disk error is encountered, Super Utility Plus will 
display a message des6ribing the error and give you the option to 
retry the I/0 operation with the prompt,· 

Copyright (c) 1982 by Breeze/QSD, Inc. 



76 SUPER UTILITY PLUS Version 3.0 

R>etry, S>kip, C>ontinuous, N>onstop or Q>uit? 

Pressing R will cause the program to retry the I/0 operation. If 
the error was due to a momentary condition, this is usually 
sufficient to correct the situation. If the error appears again, 
you may select the Continuous or Nonstop options, which will 
force Super Utility Plus to keep trying to read the bad sector 
until it gets it right or you stop the process. The only way to 
escape this is a successful I/0 operation or by pressing CLEAR, 
BREAK or SHIFT-BREAK. 

If you press S, for Skip, Super Utility Plus will go 
immediately to the sector display routine, with whatever it was 
able to read before the error forced it to stop. If it was unable 
to read anything, the display will show all 00's. If it was 
successful in doing a partial read of the sector, then whatever 
it was able to read will be displayed. Note that this may not be 
the same as what is actually on the disk. An error of any kind 
should always alert you to the fact that the data in Super 
Utility Plus' buffers may be unreliable. 

Pressing Q for Quit will abort the entire operation and return 
you directly to the File Utilities menu. 

II. COMPARE FILES 

This routine will allow you to compare two files byte by byte 
and see if any mismatches exist. You may find this routine useful 
if, for example, you have doubts about the integrity of a 
particular file and wish to check it against another copy. You 
will be asked to enter the source filename (don't forget the 
drive number!) and the compare filename. Super Utility Plus will 
scan the two files and report any mismatches on your screen: 

MISMATCH, RELATIVE SECTOR 0000H, BYTE CFH 

At the end of the scan, you will be told how many disk errors 
(due to CRC errors, etc} were encountered, if any, and the total 
number of sectors in which mismatches were found between the two 
files. 

III. COPY FILES 

. This routine is a very fast multiple-file copy utility which 
will let you move any number of files between two disks, the only 
restraint being the available space on the destination.disk. You 
are asked to supply the source drive number. Super Utility Plus 
will then read the directory of the diskette in the source drive 
and display a directory listing on the screen. At the bottom of 
the screen you will see a filename, followed by its length in 
grans and sectors, followed by the query, COPY? 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 77 

If you press "Y", the filename will scroll upward and you will 
be presented with another filename. If you press "N" then the 
filename will be replaced with another one without scrolling. If 
you hold down either key, it will repeat until all the files have 
been "tagged" for copy or not. 

When the last file has been "tagged," you will be asked for 
the destination drive. Super Utility Plus will. scan that drive 
and display the number of sectors to be copied (the total number 
of sectors occupied by all the files tagged for copy) and the 
number of sectors available on the destination disk. It will then 
proceed to copy the files over one by one. You may specify the 
same disk drive for destination as for source, and you will be 
prompted for disk swaps as needed. However, make sure that both 
source and destination disks are the same DOS type. This is 
mandatory for single-drive copy operations. 

If a file already exists on the destination disk, Super 
Utility Plus will display the message " ** Overwritten **" 
beside the filename as it copies. If there is not enough space on 
the destination disk to hold all the files, the routine will 
terminate with a message before starting the copy. 

After the last file has been copied over, the directory of the 
destination disk is updated and written back out to the disk. 

This routine will place the files starting at the lowest 
available track/sector on the destination disk and building 
upward from there, without leaving any gaps between files. It is 
a very good routine to use if you wish to "pack" a disk. Where 
possible, the file copy routine will keep the file in just one 
extent rather than splitting it up. 

If you are copying a file from a Model III formatted disk to a 
.Model I formatted disk or vice versa, Super Utility Plus will 
deliberately strip any passwords which may have been set for the 
source file. The reason for this is that Model III TRSDOS 
computes passwords differently from Model I TRSDOS (2.3 or 2.7DD) 
and LDOS and if the encoded passwords were copied over, even if 
you gave the correct password, it would not be recognized. If you 
have any password-protected files on your source disk, you must 
reassign the passwords using the ATTRIB command of the operating 
system on the destination disk after the copy routine is 
completed. However, if you are copying files to like systems 
(disks formatted with the same system) passwords will be 
transferred intact. 

If you press BREAK during the 
returned to the File Utilities 
directory will not be updated. 

copy process, 
menu, and the 

Copyright (c) 1982 by Breeze/QSD, Inc. 

you will be 
destination 



78 SUPER UTILITY PLUS version 3.0 

IV. DISK DIRECTORY 

This routine will display the directory of the disk(s) 
specified. You will be asked for the drive number. You may 
specify more than one, separating each number with commas or 
spaces. Super Utility Plus will scan the disks in order and 
display for each one the disk name, date, number of formatted 
tracks, number of free granules, and number of free directory 
slots. It will then display all the valid files on the disk, 
along with commas or spaces. Super Utility Plus will scan the 
disks in order and display for each one the disk name, date, 
number of formatted tracks, number of free granules, and number 
of free directory slots. It will then display all the valid files 
on the disk, along with their file attributes and protection 
levels. For example, SIP=7 means a file is a system file, is 
invisible, and has a protection level of 7. 

V. FREE SPACE 

Selection of this option will cause Super Utility Plus to scan 
all mounted disks and display the disk name, date, number of 
formatted tracks, number of free granules, free space in 
Kilobytes and number of free directory slots for each disk. The 
mounted disks must all be readable, that is, they must have been 
formatted by a TRSDOS system (Model I or Model III) and must 
contain recognizable directory tracks. If a non-standard disk is 
on any drive, you will be presented with an error message. 

VI. OFFSET FILE 

This routine will allow you to (a) read a file from a disk 
into a memory location of your choice, and (b) load a file into 
memory at one location and cause it to relocate and execute from 
another location. You may even set up the file so that the TRS-80 
interrupts are disabled prior to execution. The file must be in 
load file format. BASIC program files cannot be relocated. 

This routine is useful for making executable files of those 
programs which normally destroy part of the DOS when they load 
into memory. Generally, programs written for tape-based systems 
do this, since they load on top of the DOS resident module. You 
may move a tape-based (SYSTEM-type) file to disk using the 
tape-to-disk utilities of your disk system, then use this option 
to move the file so that it does not destroy the DOS until it is 
safely loaded into memory. Once the program is in memory, it can 
be relocated to its normal addresses for execution. 

Super Utility Plus will first ask you to supply the filename 
to be offset. It will then scan the file on disk and tell you the 
load module range of that file, that is, the present starting 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 

address, ending address and transfer 
that file. 

79 

(or execution) address of 

You will then be asked to supply the new load address, i.e., 
where you want it to reside when loaded from disk. You will then 
be asked if you want to add the block move APPENDAGE to the file. 
This is a· short routine which will cause the file to be 
block-moved to its normal execution addresses after loading into 
memory. Normally, machine-language files must reside in a 
particular place in memory in order to execute properly, so if 
you want the file to execute, you will want to add this 
appendage. 

If you elect to have the appendage added to your relocated 
file, you must make sure that there is enough disk space 
allocated to the file to accommodate it. More disk space will not 
be allocated if this is not the case, and your file will be left 
in an invalid format. If you are not sure whether or not this is 
the case, call up the Display File Sectors routine and locate the 
EOF sector and see if you can go beyond it. If you can (that is, 
the EOF sector was not actually the last allocated sector) you 
can go ahead with the "add appendage" procedure. 

You will then be asked if you want the interrupts disabled or 
not. Some programs will not execute properly unless the 
interrupts are disabled. You will have to determine whether the 
program you are offsetting will work correctly with the 
interrupts enabled or disabled, and set this option accordingly. 

When you press ENTER to complete this last prompt, the file 
will be written back to disk in its relocated form, and from then 
on will always load into the new locations when executed from DOS 
READY level. If you used the block move appendage, it will 
preserve the contents of the Z-80 registers at load time so that 
if your program requires them, it will still function correctly. 

VII. FILE LOCATIONS 

This option will display complete directory information about 
each file on a designated disk. You will be asked to enter the 
drive number to be scanned, and you may enter more than one drive 
number. Each drive specified must contain a standard formatted 
disk with a readable directory track. The disks will be scanned 
one by one, and information about each file in the directory will 
be displayed. The screen dump will pause to give you a chance to 
examine the information; press ENTER to scroll to the next 
screen. 

For each active file on each disk, five lines of information 
will be displayed. For example, 

Copyright (c) 1982 by Breeze/QSD, Inc. 



80 SUPER UTILITY PLUS Version 3.0 

SYSl/SYS SIP=7 
FPDE - :0,TRACK = 20,SECTOR = 05,BYTE = 00H,DEC = 03H 
EOFS = 00005, EOFB = 00H, LRL = 0 
EACC = C352H, EUPD = C220H, GRANS = 01 
EXTENTS/ 19,00,00006 / EOF 

The first line gives the file's name and attributes. 
example, the file is SYSl/SYS and has the attributes 
meaning it is a system file, invisible, with a protection 
of· 7 {"no access"). 

In this 
SIP=7, 
level 

The second line gives information about the file's directory 
entry. FPDE stands for "File Primary Directory Entry," and this 
entry is located on drive 0, track 20 {the directory track), 
sector 5, starting at relative byte 00H. 

If you were to display this sector on the screen using DISPLAY 
DISK SECTORS, you would see an entry for SYSl/SYS at that 
particular location. 

DEC stands for "Directory Entry Code," and is the relative 
byte position of the file's "hash code" in the HIT table. In this 
example, DEC =03 would mean that relative byte 03 in the HIT 
sector of the directory contains the "hash code" for SYSl/SYS. 
The DEC's position in this table is relevant to the position of 
the FPDE, and this tabie is used by the DOS to locate files in 
the directory at high speed, without the need to search through 
the directory sectors one by one. 

The third line gives information about the file's EOFS (end of 
file sector) and EOFB (end of file byte). The EOFS value is the 
last sector used by the file (not necessarily the last sector 
allocated to the file) and the EOFB is the last byte of the file 
within the EOFS. 

The fourth display line gives the encoded values of the 
passwords. EACC stands for Encoded ACCESS password. It is 
followed by the two byte hash code of the file's password, if 
any. EUPD is the Encoded UPDATE password and is the two-byte hash 
code of the file's update password. Finally, the number of grans 
occupied by the file is given_on this line. 

The last line gives the actual location of the file on the 
disk. The first number is the track where the file is located, 
the second number is the starting sector (in this case, sector 0) 
and the third is the length of the file {actually the number of 
allocated sectors). 

On a standard DOS directory, an exceptionally large file may 
an extra directory entry, known as the FXDE or File 
Directory Entry. This is very similar to the FPDE except 
filename is not contained in it, and it is not displayed 

require 
Extended 
that the 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 81 

when a directory is requested from DOS or Super Utility Plus. If 
such a file was encountered by Super Utility Plus, additional 
information would have been displayed, givirig the FXDE'~ 
directory entry code and extents. 

TRSDOS 1.3 and 2.7DD do not allow FXDE's, so this display 
should never appear when a TRSDOS 1.3 or 2.7DD-formatted disk was 
being scanned. 

VIII. DRIVE STATUS 

This option will cause Super Utility Plus to check the status 
of all active drives in your system and report back on each. 
Drives which are disabled from the configuration tables, or not 
powered, will be reported as NOT IN SYSTEM. Drives with no disks 
but otherwise powered up will be reported as such. 

If drives are found to be NOT IN SYSTEM, the settings for them 
will automatically be changed in the configuration table to 
reflect this fact. Thus if you had a drive turned off when you 
executed this procedure and later turn it on in order to use it, 
you must return to the configuration table and restore it to an 
active status by changing the active/inactive .indicator for that 
drive (the plus or minus sign in front of the drive number -- see 
Chapter 1 for full details on configuring). 

IX. SECTOR ALLOCATION 

This option will let you enter a track and sector number on a 
mounted disk and will report which file that particular sector is 
assigned to, if any. You will be asked to supply the drive 
number, track number, and sector number. The disk to be scanned 
must contain a readable directory track, since this routine will 
use the directory information to determine whether the specified 
sector is assigned to any active file. If the specified sector 
was assigned to a file that has been killed, it will be reported 
as unassigned. 

X. BUILD FILE 

This routine will allow you to create and pre-allocate space 
on a disk for a file in as contiguous a manner as possible. The 
pre-allocated space will be noted in the file's primary directory 
entry, so that when you write to this file later on, using TRSDOS 
or LDOS, you will do so faster since the DOS will not need to 
keep returning to the directory to find space for a new granule 
every so often. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



82 SUPER UTILITY PLUS Version 3.0 

You will be asked to supply the filename along with the drive 
number in standard TRSDOS/LDOS filespec format. Super Utility 
Plus will then scan the disk and report back the disk's name, 
date, number of formatted tracks, number of free granules and 
free directory slots. It will then ask you to enter the number of 
granules you wish allocated to this new file. When you press 
ENTER, the information will be written into the disk's directory. 

XI. CLEAR FILE 

This routine will request you to enter the filename of a 
pre-existing file on a disk. It will permit you to remove all the 
data from that file without actually removing or killing the file 
from the directory. 

You will be asked, "Are you SURE you want to clear it?" This 
will give you a chance to change your mind. Enter "Y" to proceed 
with the operation, otherwise enter "N". If you press "Y", Super 
Utility Plus will zero out the data in that file. The file will 
still be present in the directory but it will in effect be empty. 

Be careful in using this routine, as there is absolutely NO 
way of recovering data from a file that has been cleared. 

XI. DISK ALLOCATION 

This routine will display a disk allocation map of the disk in 
the specified drive. The tracks will be listed in the leftmost 
column. To the right of each track will be slots for each 
granule, with one of four pos~ible symbols: the letter "X", a"." 
an underscore, or the letter L. A granule slot with the letter X 
indicates that that granule is in use, that is, assigned to an 
active file. A slot with a period indicates that this granule is 
available for use. If an "L" appears, then that granule was 
locked out by the DOS during the formatting process, perhaps due 
to a flaw in the disk, and is not available. Underscore 
characters will appear in those slot~ beyond the disk boundaries, 
that is, beyond the last formatted track on the disk. 

The letter "D" will appear on those granules which are part of 
the disk's directory track. 

XIII. COMPUTE HASH CODE 

This routine will calculate the one-byte HIT table hash code 
for any filespec. You will be asked to supply the filespec 
(passwords and drive numbers are not required) and the routine 
will return a one byte hash code in hexadecimal. This code is 
what is used by the operating system in the Hash Index Table of 
the directory. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 83 

When the operating system must look up a file, it first 
calculates this code, then goes to the HIT table to locate it. If 
this code is found in the HIT table, then its position in the 
table will correspond to the position of the main directory entry 
in the following sectors. The system is then able to quickly 
locate files this way, without having to scan through the entire 
directory each time. 

The hash codes produced by this routine, however, are not 
uniqtie. That is, two or more filespecs, though different, can 
generate the same code. This is known as a "collision." The 
system handles the collision by first checking with the main 
directory entry and comparing it with the user-supplied filename. 
If the two do not match, then the system goes back to the HIT 
table to continue the search. 

XIV. COMPUTE PASSWORDS 

This routine will allow you to either encode or decode 
passwords using the algorithms employed by the DOS. When thise 
option is selected, you will be asked whether you want to Encode 
or decode a password. To encode a password, simply enter E. You 
will be asked for the password to encode. Type it in, and the 
routine will return the 2-byte hash of that password. The 
algorithm used by this routine will depend on the configuration 
of drive 0. If drive 0 is configured for TRSDOS 1.3 (T3D) then 
the TRSDOS 1.3 algorithm will be used; otherwise the standard 
algorithm will be used. You may have to enter the configuration 
routine to all the settings for drive 0 to get a correct encode 
of your password. There are no overrides for the compute 
passwords routine. 

To decode a password, enter D. You will be asked for a 
filename. This filename must exist on one of the mounted disk. 
When you enter the filename, Super Utility Plus will read that 
file's directory entry into memory. It will then display the two 
hexadecimal bytes which make up the ACCESS password. At this time 
you will see a furiously-changing graphics character at the 
bottom of the screen. This indicates that Super Utility Plus is 
in the process of decoding that password. When it finds a 
password which translates into· the correct hash code, it wi 11 
display it, and go to work on the UPDATE password. Again the 
graphics character will appear. When it successfully decodes the 
update password, it will display it. 

If no password is displayed for either the update· or access 
passwords, it usually means that the two-byte hash is a result of 
BLANK or UNPRINTABLE characters, raising one of two 
possibilities: the password is blank, meaning there is NO 
password, or it cannot be decoded into displayable characters. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



84 SUPER UTILITY PLUS Version 3.0 

Pressing CLEAR while the graphics character is on the screen 
will abort the operation and proceed to the next step. 

With the exception of TRSDOS 1.3, all disk operating systems 
use the same password encoding algorithm. TRSDOS 1.3, however, 
uses a different algorithm. This means that a password which 
encodes one way on other systems will not encode the same way on 
TRSDOS 1.3. Also, the TRSDOS 1.3 algorithm is written in such a 
way that there is one uncodable value -- 0000H. No combination of 
characters will produce a 0000H hash encode under TRSDOS 1.3. 
This byte pair is used as a protection scheme on certain TRSDOS 
files, to prevent access. 

This difference can produce certain problems, most notably 
that when files are copied from one system to the other, formerly 
valid passwords suddenly stop working, and files which had no 
passwords at all suddenly acquire them. The easiest way to deal 
with this problem is to strip the passwords from the files after 
the transfer. Super Utility will not strip any passwords during a 
Copy Files operation, so it must be done manuallly. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 

CHAPTER 9 - MESSAGES 

Below is a list of the messages that 
generate at various points, along with 
each. 

85 

Super Utility Plus may 
a brief explanation of 

R>ETRY, S>KIP, C>ONTINUOUS, N>ONSTOP OR QUIT? 
When a disk I/0 error is encountered, in most cases, you will 

be presented a chance to retry the 9peration. This prompt gives 
you several options. R will retry the operation once; C will 
retry the operation over and over until it succeeds; N is the 
same as C but no error messages will be displayed during the 
process; Swill skip the portion of the disk where the I/0 error 
occurred; Q will abort the operation completely and return you to 
the menu. 

DRIVE n DE-ACTIVATED 
The specified drive has been 

Plus configuration table. Change 
to bring it into the system. 

NO DISKETTE IN DRIVE n 
Self-explanatory 

DRIVE TIME OUT 

disabled in the Super Utility 
the +/- setting for this drive 

The drive shut down before the I/0 operation could be 
completed. 

INTERRUPT ON PENDING COMMAND 
A disk I/0 operation was interrupted while a command to the 

floppy disk controller was still pending. 

WRITE PROTECTED DISK 
The diskette has a write-protect tab on it, or the drive has 

been declared write-protected in the configuration tables. 

HARDWARE WRITE FAULT 
An attempt to write to a disk failed due to a defect in the 

drive or controller hardware. 

SECTOR NOT FOUND 
Super Utility Plus attempted to read a sector that either was 

not there (unformatted) or had a non-standard and unreadable 
format. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



86 SUPER UTILITY PLUS Version 3.0 

ID CRC ERROR 
The CRC byte for the track and sector ID fields was wrong. 

usually indicates a flawed format. 

DATA CRC ERROR 
The CRC bytes for the sector data were wrong. This may have 

several causes: the sector is a "protected" sector, or the disk 
drive may be at fault. If it is intermittent, suspect a drive 
fault (e.g., a worn head pressure pad). 

DATA LOST 
Data was lost during a read/write operation. usually due to 

software problems, (the disk transfer code of the program was not 
fast enough to keep up with the floppy disk controller). 

DRIVE DROPPED READY 
A selected drive dropped its "ready" status bit before the I/O 

operation could be completed. 

DISK READ ERROR 
An attempt to read a disk failed. 

DISK WRITE ERROR 
An attempt to write to a disk failed. 

WRITE FAULT 
Usually signals a hardware problem with the disk drive's write 

circuitry. 

DATA LOST ON TRACK WRITE 
While writing data to a track, the timing was off by a 

sufficient amount so that data was lost before it could be 
written. This may happen if the TRS-80 CPU has been slowed down. 

nn SECTORS NOT COPIED 
During a copy sectors operation, several sectors could not be 

read for some reason or another. This message will usually appear 
in conjunction with some other error message pinpointing the 
cause of the failure. 

nn SECTORS NOT ZEROED 
During a "Zero sectors" operation, several sectors could not 

be written to. Possible causes are a hardware drive fault, or 
incompatible ("protected") formats on the target sectors. 

nn SECTORS NOT LOADED 
Several sectors could not be read. Possible causes are the 

same as above. 

nn SECTORS NOT WRITTEN 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 87 

Sectors could not 
message will usually 
pinpointing the cause. 

be written during an I/0 operation. This 
be accompanied by other error messages 

ERROR ON TRACK WRITE 
An error occurred during an attempt to write memory to a disk 

track. May indicate a hardware problem. 

TRACK READ ERROR 
An error occurred during an attempt to read a track into 

memory. 

TRACK IN BUFFER FROM xxxxH TO yyyyH 
HIT <ENTER> TO DISPLAY 

Appears on completion of a successful Track-to-Memory 
operation. The range of addresses occupied by the track data will 
be given. Press the ENTER key to view the track data. 

nn GRANULES LOCKED OUT 
Reports the total number of unusable granules on a disk 

following a format operation. 

CANNOT WRITE DIRECTORY! 
During any I/0 operation which requires the updating of the 

diskette•s directory, Super Utility Plus was unable to do the 
update. This may occur, for example, if you attempt to write to a 
Model I single-density diskette's directory on a Model III 
computer, or if the target disk is write-protected •• 

nn SECTORS LOST 
or move sectors operation, if some 

more sectors from being successfully· 
will appear at the end of the operation. 

During a copy sectors 
reason prevents one or 
written to, this message 

nn SECTORS COULD NOT BE VERIFIED 
Reports the total number of sectors that could not be verified 

during a Format or verify Disk Sectors operation. 

NON-STANDARD FORMAT 
An attempt was made to read a disk that does not have a 

TRSDOS-compatible format. 

DIRECTORY UNREADABLE 
The directory is non-standard, or damaged. 

CANNOT LOCATE DIRECTORY ON DRIVE n 
Super Utility Plus could not read the directory on the 

specified drive. Usually indicates that the directory track has 
been written with incorrect or incompatible data address marks. 

CANNOT LOCATE DIRECTORY! TRACK? 

Copyright {c) 1982 by Breeze/QSD, Inc. 



88 SUPER UTILITY PLUS version 3.0 

The program could not locate the directory and is requesting 
the user to specify its location. 

A>LLOCATION TABLE OR E>NTIRE SECTOR? 
During a GAT repair, super Utility Plus may repair orily the 

track allocation table, or alternatively, the entire sector 
including the disk name, date, auto command, etc. If you specify 
E for entire sector, Super Utility Plus will insert its own data 
for disk name, date, etc. 

GAT TABLE IS BAD! 
The Granule Allocation Table (GAT) has been found to be 

damaged or incorrect by the Check Directory routine. 

HIT TABLE IS BAD! 
The Hash Index Table (HIT) sector has been found to be damaged 

or contain errors by the Directory Check routine. 

nn TOTAL ERRORS 
Reports the total number of errors found during a directory 

check. 

BAD EXTENTS ! 
A file has been found to have incorrect extents in the 

directory entry. 

BAD BACKWARD LINK ! 
One or more of a file's Extended Directory Entries (FXDE) has 

been found to not point back to the preceding FXDE (or FPDE). 

TRACK ALLOCATED! 
An attempt was made to move a directory track to a track 

already occupied. 

DIRECTORY THERE! 
An attempt was made to move a track to the place occupied by 

the diskette directory. 

SOURCE? 
Prompt for the source drive for a sector or file copy or a 

backup operation. 

DESTINATION? 
Prompt for the destination drive or drives 

backup operation. You may enter more than one 
separated by commas or spaces. 

MOUNT DESTINATION DISKETTES 

for a file copy or 
destination drive, 

Prompt to mount the diskettes in all the specified destination 
drives. Press ENTER to proceed with operation. 

NO DESTINATION DRIVES ! 

Copyright (c) 1982 by Breeze/QSD, Inc. 



User's Manual 89 

No destination drives were specified for a file or sector copy 
or backup operation. 

UPDATING DIRECTORY TO nnn TRACKS 
This message will appear as Super Utility Plus modifies the 

disk directory's GAT table to reflect the added space if FORMAT 
was used to increase the track count on a diskette, or if a 
backup was performed ·between two disks with differing track 
counts. 

CANNOT UPDATE DIRECTORY 
An attempt to update a diskette directory failed for some 

reason. 

DRIVE x MOUNTED AND READY 
Message returned by the Drive Status routine for all drives 

which are powered on and have diskettes mounted. 

DRIVE X NOT IN SYSTEM 
Message returned by the Drive Status routine for all drives 

which are either not physically present, not powered, or disabled 
in Super Utility Plus's internal configuration tables. 

OPEN DOOR ON DRIVE x 
Self-explanatory. 

INVALID FILESPEC ! 
The user entered a filespec in invalid or non-TRSDOS format. 

The correct format is "FILENAME/EXT.PASSWORD:D." See your TRSDOS 
or LDOS manual for more details. 

FILE NOT FOUND! 
The specified filespec was not on the disk directory. 

NEXT SECTOR OUT OF RANGE, 
POSITIONED TO SECTOR xxxxx 

During a Display File Sectors operation, the user attempted to 
page beyond the boundaries of the file bein·g viewed. 

SECTOR NOT 
Message 

Allocation 
data from a 

ASSIGNED TO ANY FILE 
returned when the sector specified in a Sector 

scan is not assigned to an active file. It may contain 
KILLED file, however. 

FILE IS NOT IN LOAD FORMAT! 
An attempt was made to offset a file tha~ is not in the 

correct load module format or was not a machine-language file. 

ADD APPENDAGE? 
Prompt to the user to specify whether or not the block move 

appendage is to be added to a file that has been offset from its 
normal load addresses. Reply "Y" or "N". 

Copyright (c} 1982 by Breeze/QSD, Inc. 



90 SUPER UTILITY PLUS version 3.0 

MISMATCH, RELATIVE SECTOR nnnnn, BYTE xx 
Indicates the position of a mismatch during a file compare or 

sector compare operation. 

nn DISK ERRORS 
nn SECTOR MISMATCHES 

Reports the total number of disk I/O errors encountered, and 
the total number of sectors in which mismatches were found, upon 
completion of a file compare or sector compare operation. 

EOF DEST FILE REACHED! 
During a file compare operation, the end of the destination 

file was encountered unexpectedly. 

**OVERWRITTEN** 
During a file copy operation, any 

which has the same name as a file 
overwritten with the new data. 

FILE ALREADY EXISTS ! 

file on the destination disk 
being copied over will be 

An attempt was made to build a file with a name that already 
is in the diskette directory. 

NO SPACE AVAILABLE! 
An attempt was made to BUILD a file larger than the available 

space on a diskette, or to copy files onto a diskette with no 
free space remaining. 

GRANS TO ALLOCATE? 
Prompt to the user to 

built. Enter the number 
allocated. 

CANNOT ESTABLISH DISK TYPE 

specify the size 
of grans that the 

of the file being 
file is to be 

Indicates that Super Utility Plus is not able to recognize a 
disk as being formatted by one of the valid DOS types. 

Copyright (c) 1982 by Breeze/QSD, Ince 







The Special Edition 1 

FOREWORD 

Things were not working. I was trying to copy a program for a 
customer, but it was unreadable to the TRS-80 and no one could 
find another copy. At the software house where I worked, no one 
else was doing any better. One of my co-workers needed to edit a 
program, but the only copy of that program would not load. The 
person with the other TRS-80 could not even get it to boot. 
Things seldom run smoothly in the software business, but this 
situation had gone beyond our endurance. Tempers, including mine, 
were beginning to flare. Suddenly I heard a voice saying, "Need 
help?" It was Paul Wiener, the fellow who wrote this book. In his 
hand was a diskette. Noticing that my face was turning from red 
to purple, he walked up to me and said, "Problems?" 

Before I could answer, he used the disk he was carrying to 
reformat the disk I was trying to copy. In a few seconds the 
whole disk had been reformatted without destroying the contents. 
Immediately the TRS-80 began to turn out copy after flawless 
copy. 

"What was that disk?" I asked. 
"Super Utility," he said •. Before I could ask any more 

questions he had walked to the next computer and repaired the 
hash table of the disk that would not load the needed program. 
Then he quickly moved to the other side of the counter and in a 
few seconds repaired the disk that would not boot. In less than a 
few minutes Paul had put an end to two days of nonproductive 
computer frustration. 

I was impressed. I suggested that they should start including 
a free cape with each copy of Super Utility. Kim Watt, the author 
of SUPER UTILITY -- now upgraded to SUPER UTILITY PLUS -- ignored 
that suggestion. He also ignored my only complaint. SUPER UTILITY 
was so versatile and had so many options that it was not always 
easy for people like me to use it. Fortunately I could take all 
my stupid questions to Paul who would patiently answer them. 
Unfortunately for most other people, they could not. Now Paul has 
collected the answers to all my stupid questions, added a lot of 
other material, and put together this book. Now you too can 
become a software superhero, but you'll have to provide your own 
cape. 

William D. Allen 
Measurement Systems Engineer 
Physics Department 
Simmons College 
02 Feb 1982 

Copyright (c) 1983 by Breeze/QSD, Inc. 



2 INSIDE SUPER UTILITY PLUS 

Notes on Nomenclature 

I've always been a disciple of Alice's caterpillar, making 
words mean what I mean them to mean by making them go where no 
similar words have gone before. Less intentionally, I have also 
been one of our century's leading exponents of creative spelling. 
My editors and friends, who have to interpret my day to day 
scribblings and utterings, will tell you to what extremes I've 
been known to carry these propensities. 

Since this book is being published by a sane publisher, I've 
allowed Microproof to veto some of my more original 
concatenations of letters. With regard to inventing new words, 
using old words in strange ways, and unilaterally enacting new 
laws of grammar, I've abandoned departs of speech and restricted 
myself to the conventions--as much as possible. For instance, 
I'll be using the smaller-than and greater-than symbols {"<" and 
">") as brackets to indicate keys which you are supposed to 
press. So when you see a statement like 'Press <l><ENTER>', 
you'll know you're intended to press the key that says "l" and 
the key that says "ENTER." 

Sometimes I've used the more or less standard shorthand of 
saying "Enter <Y>" to mean press <Y> and then press <ENTER>. 
"Press," "type," or 'key <Y>', on the other hand, indicates that 
you're not supposed to press <ENTER> afterwards. 

In some instances, I've allowed myself to stretch things just 
a little. I've used single quotes instead of double quotes to 
indicate something that Super Utility. puts on the screen. So 
'HIGHSPEED=Y' means that when you look at the screen, you will 
see HIGHSPEED=Y but no quotes. 

But I've also used single quotes, rather than doubles, to 
escape a dilemma--the dilemma being that it's a grammatical 
requirement to enclose certain punctuation within quotes, even 
when logic and clarity require placing the punctuation outside 
the quotes. So I'll tell you to type 1 1,1,1 1 , rather than 
"1,1,1." Notice how in the former, the third comma is outside the 
single quotes, but in the latter, the period is inside the double 
quotes where it creates the following ambiguity: do I or don't I 
want you to type the period? You'll notice that I've already used 
that escape hatch earlier in this preface. 

In certain cases, I have gone ahead and coined new terms after 
all. I've worked up a taxonomy of disk errors. You'll learn about 
compliant errors and stubborn errors. You'll learn about two 
kinds of peccadilloes, and about nightmares. The less said about 
nightmares the better. 

"Farkled" is a word you'll be seeing a lot of in this book. 
It's used by Jesse Bob Overholt in his Alternate Source columns. 
It's usually used in conjunction with munched disks. It means 
"messed up." 

I sometimes use the term "TRSDOS III" when I get tired of 
spelling out "Model III TRSDOS." 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 3 

A last word about words: this book is about Super Utility 
Plus. Much of the information simply doesn't apply to plain old 
Super Utility. But the manuscript looked so cluttered up with 
"Plus"'s that I pulled all of them out at the last minute. So 
when you see Super Utility, remember, I mean Super Utility Plus! 

A last word: This book is not intended to be a substitute for 
your Super Utility instruction manual. My purpose is to fill in 
the background needed to use Super Utility effectively, describe 
some extended application techniques which aren't covered in the 
manual, and to clarify a few points which were covered, but have 
been generally misunderstood. 

This book won't be very useful to you if you don't use your 
Super Utility manual as well. Please keep it handy and refer to 
it whenever necessary. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



4 INSIDE SUPER UTILITY PLUS 

Chapter I 
TECHNICAL INTRODUCTION 

Though it's not strictly necessary, knowing a little about the 
way information is stored on and retrieved from your disks can 
help you understand Super Utility Plus and use it more 
effectively. All TRS-80 disk I/0 takes place through a special 
piece of hardware manufactured by the Western Digital 
Corporation. It's called the Floppy Disk Controller chip (FDC). 
In this chapter I will describe some of the FDC's 
characteristics, functions, and peculiarities. Wherever 
appropriate, I will indicate which features of Super Utility Plus 
allow you to observe or control the FDC functions, or otherwise 
capitalize on their results. Detailed instructions on how to 
actually use Super Utility Plus to achieve these effects will be 
found in various other chapters. 

Some of the information in this chapter may seem a little 
technical. If you're not into electronics or machine language, 
don't worry. You can probably follow this anyway. I don't know 
the difference between a casistor and a repacitor, but I can 
still relate to the concepts presented here. Even if you can't or 
don't want to acquaint yourself with t.hese technicalities, it 
might be a good idea for you to skim this section anyway. The 
references to other chapters will help you zero in on the 
sections of this book which are more pertinent to your interests. 

The FDC has the ability to translate back and forth between 
serial (bit by bit) data and parallel (byte by byte) data. This 
is necessary because the z-a0 handles data in parallel, but data 
must be moved to and from the disk serially. The FDC also 
contains what amounts to a dedicated microprocessor which 
performs certain control functions and computations that the 
TRS-80's Z-80 isn't fast enough for. 

Though the Foe· is a wonderful device, there are certain 
facets of its internal logic that can create difficulties, and 
there is no way around them other than convoluted programming. In 
this book, I will not try to explain why the FDC chip does things 
as it does. That will be accepted as part of the given. But where 
pertinent, I will explain what the FDC does, so you will 
understand why Super Utility Plus (and other software) has to be 
the way it is. This knowledge will also help you use Super 
Utility to the fullest advantage. 

The division of disk space into tracks, granules, and sectors 
has been adequately dealt with in numerous popular books. Tandy's 
TRSDOS & Disk BASIC Reference Manual ,(that's your good ol' Model 
I TRSDOS users' manual) has a brief but intelligible treatment of 
the topic in section 2, Mini Disk Operation. There are even a 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 5 

couple of nice diagrams. Page 74 of the Model III Disk Operator's 
Manual also mentions the subject, but there aren't any diagrams. 
If you would like more information about the subject matter of 
this chapter, see the informal bibliography near the chapter's 
end. 

Briefly, the surface of a disk is divided up into concentric 
rings, called tracks. The oldest TRS-80 disk drives could only 
read and write to 35 such tracks. Most newer drives can handle at 
least 40, because the read/write head can move farther in toward 
the center of the disk. Both the 35 and 40 track drives use a 48 
Tracks Per Inch (TPI) format. 

Eighty-track drives are now becoming popular, but they access 
tracks which are only half as wide as those used by 35 and 40 
track drives. Thus, disks used by 80 track drives may be said to 
have double track density, since they contain twice as many 
tracks per inch as do disks used by standard drives. This should 
not be confused with the more conventional type of double 
density, which puts more data in each track. (Editor's note: Some 
disk drive manufacturers have taken to using the term "quad 
density" which refers to a combination of both "doubie track 
density" and the conventional "double density"; hence a "quad 
density" drive is usually an 80-track drive capable of 
double-density) 

Since a track written by an 80 track drive is only half as 
wide as one written by a forty track drive, 40 track drives can't 
read diskettes which were written by 80 trackers. However, 80 
track drives can read disks created by 40 track drives. All the 
information is present and detectable. However, when the 80 track 
drive tries to step to another track, it won't move ~he head far 
enough to reach it. Therefore, when an 80 track drive is dealing 
with a 40 track disk, the system software must move the head 
twice, instead of once, to reach the next track. Super Utility's 
Double-step feature accomplishes this. You select it from the 
CONFIGURATION mode. 

With Double-step, 80 track drives may read data written by 40 
track drives, and they may do so fairly reliably. However, it is 
risky to attempt to write to 40 track diskettes in 80 track 
drives. If you use Super Utility's Double-step feature to write, 
you will probably succeed in creating data which can be read 
back--only while the target disk is still in the 80 track drive! 
If you intend to use the disk in a 40 track drive again, you may 
be heading for trouble. See the MISCELLANEOUS Chapter for a more 
detailed account of this topic. 

Another caution: As stated earlier, standard 35 and 40 track 
drives use a 48 Track Per Inch (TPI) format. Eighty track drives 
normally use a 96 TPI format. This is why a Double-step feature 
works. One TPI is exactly double the other TPI, so moving the 
head twice gets to the same place. However some drives 
(especially some old Micropolis 77 trackers) use a 100 TPI 
format. Disks written on such drives will be incompatible with 
normal drives, with or without the Double-step feature. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



6 INSIDE SUPER UTILITY PLUS 

FIGURE 1 

Copyright (c} 1983 by Breeze/QSD, Inc. 

\ 

S.TA1<..T!i\J4 

po!NT F o P.__ 

E\/E.f<..y T1<..Aq 



The Special Edition 7 

The TRS-80 uses soft sectored diskettes, which means that 
there is only one index hole on each disk. This hole is detected 
by an optical sensor within the disk drive. It defines the 
starting point of each track for the system (see figure 1). 

Tracks are divided into artificial units called grans. In what 
I will refer to as The Standard Scheme (TSS), each track has two 
grans. Grans are further divided into units called sectors. In 
TSS, each gran has 5 sectors. Thus, each track contains 10 
sectors (see figure 2). In TSS, each sector contains 256 bytes of 
user accessible information, plus some special data normally used 
only by the system. Super Utility allows you to monitor and alter 
all this information--both user and system. 

Other arrangements are possible. Non-standard, or "protected" 
disks can vary these modes of disk organization, as well as 
several other factors which will be described later. Even some 
"standard" disks may not conform to the picture just painted. For 
instance, some double density disks (DOSPLUS, LDOS) have six 
sectors per gran and three grans per track while others (TRSDOS 
III) have six grans of three sectors each per track. NEWDOS-80 
and DBLDOS use lumps instead of grans. Lumps are explained in the 
MISCELLANEOUS Chapter. 

As I insinuated a couple of paragraphs back, a disk contains 
a certain amount of information other than "user data." The bulk 
of this data is placed on the disk during the formatting process. 
Mostly, it consists of special gaps and ID fields which separate 
and identify the various tracks and sectors for the FDC. 

Consider, for a moment, what a remarkable task the Floppy 
Disk Controller performs as it reads information from a disk. As 
you probably know, the data is recorded on disk as a series of 
tiny magnetized pulses. As the disk spins, over 100,000 of these 
dots fly by the disk drive's read/write head every second. To 
interpret the data properly, the FDC must maintain perfect 
synchronization with the flow of pulses. Without perfect sync, 
bits could be lost. The loss of a single bit would cause all 
further data to be out of place, or "shifted", in memory. Such 
shifted data would be useless, as the computer would interpret it 
incorrectly. 

To help achieve correct synchronization, the FDC has its own 
internal clock. In the TRS-80, the FDC clock runs at 1 mhz. With 
the help of its clock, the FDC puts a series of evenly spaced 
pulses, called clock bits, on the disk. When writing data to the 
disk, a one bit is represented by placing a data pulse between 
two successive clock bits. A zero is represented by leaving the 
interval between two clock bits blank. 

When the system reads back the information, the FDC simply 
locks into the flow of clock bits. This lets the FDC look at. the 
slot between each successive pair of clock bits and interpret 
blank slots as zeros, and slots with pulses as ones. Actually, 
it's not quite that simple, but almost. An FM (Frequency 
Modulation) method is used, since the frequency of the bit flow 
will be higher where there is a data bit between clock bits than 
where there isn't. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



8 INSIDE SUPER UTILITY PLUS 

I 

I 

\ 
\ 

\ 

~ 

2. qP-AN!. f'E/l.. i'P-AC.K. 

5 S.E.C..ToA, Pell.. ~~AN 

iO SE:c.ToQ.5, PE.fl.. TA.Ac:.K 

FIGURE 2 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 9 

You might think that all this would assure perfect 
synchronization. Unfortunately, it doesn't, largely because of 
small variations in the speed of spinning disks. Such variations 
can nullify the high precision of the FDC's clock, so that in 
effect, the FDC which wrote the data was timed differently from 
the FDC which tries to read in the data, even if it's one and the 
same FDC! 

Another cause of trouble is that the inner tracks are 
physically shorter than, though logically equal in length to, the 
outer tracks. In other words, on the inner tracks, the same 
number of clock and data bits must be jammed into a shorter band. 
This can make it more difficult for the FDC to stay in sync and 
separate the clock bits from the data bits. 

As you've probably heard, data separators are available to 
cure these problems. An important part of their read circuitry is 
a phase locked loop widget which dynamically adjusts the clock 
rate of the FDC to match the flow of clock bits on the target 
disk. Such external data separators are quite effective. Yet, 
even with one (and especially without one), it is still possible 
for errors to occur. Consequently, certain other measures are 
taken to insure accuracy. 

Every sector on the disk has a special ID header. This header 
is preceded by a "gap" which separates it from the previous 
sector. The sequence of gap and ID header makes it easy for the 
FDC to lock into the bit flow for that sector. Obviously, the 
longer the sector, the more likely the FDC is to drift out of 
sync during a read. Thus, it is important to keep the sectors 
sufficiently short to ensure positive sync. 

The people who devised the original TRS-80 system software 
apparently felt that dividing a track into 10 sectors, resulted 
in short enough sectors (256 bytes a piece) to minimize errors. 
Almost all other TRS-80 system software programmers have followed 
suit. 

Super Utility allows you to create special disk formats. If 
you wish, you can create disks with fewer (or more than) than 10 
sectors per track. You may even fill an entire track with only 
one giant sector. If you do so, however, you should be aware that 
you're risking a higher probability of error. You can create 
these unusual tracks with super Utility's SPECIAL FORMAT, or 
BUILD FORMAT TRACK options. 

As you have seen, a major purpose of dividing each track up 
into sectors is to give the FDC frequent opportunities to 
resynchronize. In order for this scheme to work, each sector must 
start in a way which the FDC can easily detect and lock onto. 
Here's how that is arranged. 

Every sector contains two subfields which I shall refer to as 
the header subfield and the data subfield (see figure 3). The 
header subfield (sometimes called the sector ID block or ID pack) 
is a seven byte segment that starts the sector (Editor's note: 
this is not the same as the "Pack ID" referred to by TRSDOS 2.3's 
BACKUP utility when you attempt to do a backup to a previously 
formatted disk with a different name. That "Pack ID" refers to 

Copyright (c) 1983 by Breeze/QSD, Inc. 



lL 
u.. 
u. 
u. 

10 

I 
I 
I 

·•' 

! SEe-r0 ~ 
j L£N!]TH 
I <.o 0(: 
I 

I $EC.Tl)~ 
I 
I 

' I 
t 
I 
I 

INSIDE SUPER UTILITY PLUS 

-~. 

Q 

FIGURE 3 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 11 

the diskette's name/master password combo). It consists of a one 
byte address mark followed by four one byte designators and a two 
byte CRC. The address mark is always FE hex. The header ~ddress 
mark is also called an ID address mark. Each of the four 
designators contains pertinent information about that 
sector--namely the track number, head number, sector number, and 
sector length. 

Notice that there is no separate identifier for the track as 
a whole--the track number is specified by the'first designator in 
every one of its sectors. The head designator is useful with 
double-sided diskettes, or hard disks with more than one track 
per "cylinder." On all "normal" TRS-80 diskettes, the head 
designator should contain zero (0). If a disk were double-sided, 
that is, formatted on both sides, the head designator would read 
one (1) to indicate a sector on the back side of the disk. And 
while we're on the subject, it should be noted that the new Super 
Utility Plus 3.0 does offer support for double-sided drives -
but not for all the DOSes that it supports. Double-sided drives 
created by DOSPLUS, LDOS and MULTIDOS can be operated on. 

The sector-number designator is self explanatory. The sector 
length designator contains a code that indicates the number of 
data bytes in the sector. With standard TRS-80 disks, it will 
always be a 1, indicating 256 bytes of user data. This is what is 
sometimes referred to as "IBM format." In the IBM scheme of 
things, a length byte of 0 indicates that there are 128 bytes of 
data in the sector, while a length of 1 indicates 256 data bytes. 
In the "non-IBM" convention, the length byte multiplied by 16 
gives the actual number of data bytes in the following sector; 
however, a length byte of 0 indicates that there are 4096 bytes 
to follow. The header field is put on the disk when the disk is 
formatted, and is never altered by the systern--unless the disk is 
reformatted. 

The second, or data, subfield comprises the main body of the 
sector. It contains the actual user data. The data subfield is 
rewritten every time data is saved to that sector. 

Each of the two subfields is preceded by a "gap", which 
typically consists of 12 FF hex bytes followed by six zero bytes. 
I use the word "typically" advisedly, because there is a great 
deal of variation from this norm, both with respect to the number 
of bytes in the gap and the values of those bytes. 

The data subfield, like the header subfield, starts with a 
one byte "address mark." When these address marks are written to 
disk, the frequericy of the accompanying clock signal is changed 
by dropping some of the pulses. This makes the address marks 
unique. Therefore, the FDC can easily and quickly find address 
marks, and will not be fooled by sequences of data marks which 
mimic address marks (the data can't fake the change in the clock 
pulses). 

For header subfields, the address mark used is FE hex. The 
address mark used for the data subfield is often referred to as 
the Data Address Mark (or DAM). The actual byte used varies, 
depending upon whether a Model I or Model III is being used, 

Copyright (c) 1983 by Breeze/QSD, Inc. 



12 INSIDE SUPER UTILITY PLUS 

whether double or single density is employed, what operating 
system is in use, and whether the sector in question is a normal 
one or part of the disk directory. To simplify this discussion, 
we'll assume a garden variety situation. This means a Model I 
running TRSDOS in single density. For other situations, see 
figure (4). The DAM for this "garden variety situation" is FB hex 
for standard sectors, or FA hex for directory sectors. The 
directory is given a different DAM to help the disk operating 
system in locating it. 

Both the header and data subfields end with a two byte Cyclic 
Redundancy Check (CRC). CRC's are used to detect errors which 
occur despite all precautions. A CRC performs much the same 
function as a parity check or checksum, but is much more 
reliable. Essentially, it is a 16 bit number derived by applying 
a polynomial evaluation to every bit in the associated subfield. 
In other words, the CRC at the end of any subfield is derived by 
an operation on all the other bits in that subfield. This 
computation is one of the super~fast ones that the Z-80 leaves to 
the dedicated FDC microprocessor. 

When the FDC reads back a sector, it recomputes the CRC bytes 
and compares them to those that were written on the disk during 
the last formatting or data-save operation. Any disagreement 
causes the FDC to flag an error (some disk operating systems 
respond to this by displaying "parity error" messages although, 
strictly speaking, what •has occurred is not a parity error but a 
CRC error -- Ed.). 

A standard disk track consists of ten sectors, separated by 
gaps, as described. In addition, there is an extra gap between 
the track's starting point, as defined by the disk's index hole, 
and the beginning the first sector. This gap is similar to the 
others, but normally a little longer. 

Super Utility's ZAP package contains options to READ ID 
ADDRESS MARKS and ALTER DATA ADDRESS MARKS. These give you good 
control over the address marks on your disks. READ ID ADDRESS 
MARKS also can display CRC values as read from disk, and tell you 
whether the currently calculated CRC's agree with those read. 
Also, super Utility's CONFIGURE SYSTEM option ensures that Super 
Utility's own use of address marks will be consistent with that 
of the operating system of any target disk. 

As I said, each sector header subfield contains a track and 
sector number. It is possible to give any sector a "false" ID, 
simply by putting nonstandard information in its header. Thus, a 
sector may be the first cf ten physical sectors on the first 
physical track on a 40 track disk, and yet have a header that 
says it is the 108th sector on the 99th track. 

In fact, DOS never labels physically adjacent sectors 
consecutively. For better disk I/0, it uses the following 
pattern: 0,5,1,6,2,7,3,8,4,9. As you can see, this is composed of 
an interleaving of the two following patterns: 0,1,2,3,4, and 
5,6,7,8,9. Since such an arrangement is normal, it is rarely 
referred to as false labeling. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 13 

Figure 4 

Directory DAM Chart 

Model I Model III 
Sg l. Den - Dbl. Oen Sgl. Den - Dbl. Den 

DOS type 

TRSDOS I A9 Al 
TRSDOS III A8 AO 

LOOS I(S) AB Al 
LOOS I ( D) A9 Al 

LDOS III(S) AB Al 
LOOS III(D) A9 Al 

ALL OTHERS 

I ( S) A9 Al 
I ( D) A9 Al 

III(S) A9 Al 
III(D) A9 Al 

······························································· 

Copyright (c) 1983 by Breeze/QSD, Inc. 



14 INSIDE SUPER UTILITY PLUS 

Tracks whose numbers don't reflect their actual physical 
position on the disk, however, are another matter. Tracks may not 
only be mislabeled, but each one of a track's sectors may be 
given a different track number! This is why in some displays, 
Super Utility shows two track numbers. In the ZAP module, they're 
labeled TRACK and TRUE. TRUE shows the track number as read from 
the disk; TRACK shows the number of the track according to its 
physical location. In Read ID Address Marks, SOURCE shows the 
actual physical track number, while TRACK shows the track number 
as read from the disk. 

As you can see, the designers of the FDC gave a lot of 
thought to error prevention and detection. In the DISK ERRORS 
Chapter, we will see what kinds of disk errors can occur, and how 
to detect and correct them. 

INFORMAL BIBLIOGRAPHY 

TRS-80 Disk and Other Mysteries~ by Harvard Pennington, 
published by IJG, seems to be considered the classic in the 
field. I understand an updated version is being prepared which 
will have information on double density, Newdos 80, and other new 
mysteries. So if you're thinking of buying TRS-80 Disk and Other 
Mysteries, it may be worth your while to wait for the update. 

If you can get by with a straightforward presentation of the 
subject, you might look into book 2 in the Mystery series, 
Microsoft BASIC and Decoded and Other Mysteries, by James 
Farvour. It's an information, rather than explanation, oriented 
book. Its ten or so pages on disk I/O present a concise recap of 
much of the information in Harv's book, with some new data to 
boot. 

Other good books to have handy are Barden's Disk Interfacing 
Guide and Pathways Through the ROM. Pathways is anthologized and 
edited by George Blank, and contains material by Robert 
Richardson, Roger Fuller, John Phillips, George Blank, John 
Hartford {not, as far as I know, the singer), and the Western 
Digital Corporation. It includes Supermap {a comprehensive TRS-80 
Model 1 memory map), the technical manual for the 1771 {the Model 
l's FDC), and an essay on DOS containing practical information 
which I haven't seen published anywhere else. 

An excellent description 
presented in John Brule's 
Alternate Source, Volume II, 
volume 1, number 1, contains 
Roy Soltoff. 

of Model I TRSDOS formatting is 
Some Disk Considerations, in The 

number 3. Also, the LDOS Quarterly, 
an enlightening article on DAM's by 

The latest book in the IJG "Other Mysteries" series, Machine 
Language Disk I/O and Other Mysteries by Michael A. Wagner, is a 
good manual on how to perform disk I/O at the lowest {machine 
language level). This book gives you a closer view of what I just 

Copyright (c). 1983 by Breeze/QSD, Inc. 



The Special Edition 15 

discussed here, with details on how to actually implement the 
various items. 

Figure 10 

=>HISPEED=Y, DUAL=N, SAVE=N, ON=3E01D3FE0000, OFF=3E00D3FE0000 
PRINTER GRAPHICS=Y, LOCASE=Y, MXBO=N, PARALLEL=Y, LFEEDS=N 

+:0A= 40, 

+:1B= 80 

=:2C= 35 

-:3I= 35 

TKS= 40, DIR= 17, STEP=3, DELAY=2/2, WP=N 
DENSITY=S, L-GRANS, TRACK0=S, SS=0, DAM=0 
TKS= 80, DIR= 40, STEP=O, DELAY=l/2, WP=N 
DENSITY=D, L-GRANS, TRACK0=D, SS=l, DAM=0 
TKS= 35, DIR= 17, STEP=0, DELAY=l/2, WP=Y 
DENSITY=S L-GRANS, TRACKO=S, SS=O, DAM=l 
TKS= 63, DIR= 17, STEP=3, DELAY=2/2, WP=N 
DENSITY=D, I-GRANS, TRACK0=S, SS=0, DAM=0 

••e•••••••••••'•••••••••••••••••••••••• .. ••• .. •••••••••••••• .. ••••• 

Copyright (c) 1983 by Breeze/QSD, Inc. 



16 

Chapter II 
CONFIGURATION 

INSIDE SUPER UTILITY PLUS 

You get into the configuration module by entering <9> from the 
main menu. As soon as you do so, the screen will be filled with a 
display called the configuration table. Configuration may seem 
complicated to some new users, but it is actually very simple. 
It's a way of telling Super Utility about factors which can vary 
from use to use. 

Some factors may be different from disk to disk, and others 
from computer system to computer system. Those which vary from 
disk to disk include the DOS contained on the disk, the number of 
formatted tracks, sides and the density (single or double) of the 
disk's data. 

Factors which may differ from system to system include the 
characteristics of your printer (if you have one), the absence or 
presence of a high speed modification, the number of disk drives 
you have, and the speed characteristics of each. 

Super Utility needs to know whether your printer needs a line 
feed after each carriage return, and if it's capable of printing 
lower case letters and/or TRS-80 graphics. If you printer handles 
graphi~s, Super Utility needs to know whether it's an Epson MX-80 
or not (MX-80's may require the computer to adjust the graphics 
characters before sending them to the printer). 

If you have a high speed mod, Super Utility wants to know 
three things. 1) whether you want high speed turned on or off; 2) 
how to turn it on; and 3) how to turn it off. 

Super Utility also wants to know if you have a Doubler 
installed in your Model I or not, and whether it is a Radio Shack 
unit or someone else's. 

If you have an 80 track disk-drive, and want to use it with 
disks that were formatted on a 35 or 40 track drive, Super 
Utility needs to know about that, too. Naturally, this 
information is entered via the configuration module. You can also 
use the configuration module to inform Super Utility that you 
want a drive software write-protected. This affords similar 
protection to that obtained by putting a write protect tab on a 
disk. Once you've told Super Utility to write protect a drive, it 
will refuse all requests to write to that drive until you cancel 
the write protect status. 

The new version of Super Utility Plus assumes certain things 
in the configuration table that may not be immediately obvious. 
Part of the reason for this was sjmple lack of space on the 
screen, so you have to understand the configuration process 
thoroughly to set the tables up correctly. Figure 10 depicts a 
typical CONFIGURATION table. The configuration shown is similar, 
but not identical, to the one in the Super Utility manual. It's 
possible to change most of the data in the table, simply by 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 17 

typing in different data. We'll get to that shortly. But first, 
lets analyze the information on line one of this sample: 

=> DUAL=N GRAPHICS=N LOCASE=N LINEFEEDS=N DOUBLER=R SPEED=N 

The"=>" at the beginning of the line means that this is the 
"current" line--in other words, this is the line which may now be 
altered by typing in new data. Note that there are 6 items of 
information, separated by commas, on this line: 

1 DUAL=N 
2 GRAPHICS=N 
3 LOCASE=N 
4 LINEFEEDS=N 
5 DOUBLER=R 
6 SPEED=N 

In addition, you can enter two more items which are not 
prompted for: the code to turn on your high speed clock, if you 
have any, and the code to turn it off. Let's call these items 7 
and 8. Thus, items 6,7, and 8 have to do with controlling any 
high speed modification which may have been installed in your 
computer. Let's consider the meaning of each. 

I guess I'd better preface my discussion of speed 
configuration with this comment: If you have a normal TRS-80, 
with no high speed clock or similar modification, it doesn't 
matter much how you configure items 6, 7, and 8. But you should 
keep item six set to 'SPEED=N'. 

'SPEED=Y' indicates that your computer has a high speed mod 
and you want Super Utility to keep high speed turned on. Here's 
why Super Utility may needs to know you're running high speed. If 
your computer is in high gear during disk I/0, the timing may be 
thrown off enough to cause errors. Some "intelligent" high speed 
mods automatically restore normal speed during disk I/0 and then 
go back into high as soon as the I/0 is finished. But some do 
not. If yours doesn't, Super Utility can adjust its timing loops 
to secure reliable I/0. It will also adjust timing loops 
controlling cursor flash and key repeat. High speed mods usually 
have software commands which you can use to change speeds. Super 
Utility wants to know what those commands are for your system. 
Once it knows them, you can turn the high speed on and off from 
the key board by configuring 'SPEED=Y' or 'SPEED=N'. If you're 
not sure what the on and off commands are for your system, refer 
to your speed mod documentation. Most of the popular high speed 
mods are controlled by output to port 254 decimal. In the current 
example, the high speed in our hypothetical computer is turned on 
by outputting one (1) to port 254. It's turned off by outputting 
zero (0) to port 254. If you were controlling the speed from 
BASIC, you'd enter OUT 254,1 to turn on high speed, and OUT 254,0 
to turn it off. Super Utility, of course, uses Z-80 machine 
language rather than of BASIC. In Z-80 code, there are many ways 
to send a value to a port. The sequence 3E01D3FE is one of them. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



18 INSIDE SUPER UTILITY PLUS 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

Here is a disassembly of the sequence. 

3E01 
D3FE 

LD 
OUT 

A,l 
0FEH,A 

19 

In the first line 3E says to load the A register. 01 is the the 
value with which it's to be loaded. 

In the second line, D3 indicates that the value in the A 
register is to be sent out to a port. The FE means that the port 
to be used is FE (hex) or 254 (decimal). So executing the machine 
instructions 3E01D3FE resµlts in a one being sent to port 254. 
Now, let's take another look at '3E01D3FE'. It consists of four 
hexadecimal bytes. 3E 01 D3 FE is the sequence of machine code 
which we just looked at. It sends a one to port 254. In this new 
version of Super Utility Plus, you simply enter these HEX codes 
after your reply to the "SPEED" prompt. You'll notice that there 
are no prompts for the ON and OFF codes, unlike the older 
versions. They'll be accepted anyway. You may enter up to 8 
hexadecimal values for clock control. However, you no longer need 
to pad them out with 00 1 s in case they're less than 8. The 
program now does that for you. 

Next, let's look at '3E00D3FE', the sequence required to turn 
the high speed clock OFF. Notice that the OFF sequence is exactly 
the same as the ON sequence, except that the 01 byte after the 3E 
has been replaced with a 00 byte. This specifies that high speed 
is to be turned off by outputting a zero to port 254. 

If your high speed mod requires different instruction 
sequences to turn it on and off, you must determine what they 
are. If you have no knowledge of machine language, this may seem 
intimidating, but in most. cases it's easy. Port output is almost 
always used. The only varying factor is the number of the port 
and the values to be sent to that port. If your high speed mod 
requires a value other than one (01) to turn it on, simply 
substitute that value for the 01 in '3E01 •••••••• '. If a byte 
other than zero (0) turns off your high speed, just replace the 
00 in '3E00 •••••••• ' with the byte that slows down your system. 
Always remember to use a two digit hexadecimal byte. 

If you need to use a port other than FEH (254 decimal), 
substitute the port number for the 'FE's in '3E01D3FE •••• ' and 
'3E00D3FE •••• '. Again, remember to use two digit hexadecimal 
bytes to represent the port numbers. 

If you have a high speed mod whose on and off instructions 
are not similar to the ones in this example, consult the high 
speed mod documentation to learn just what machine code sequence 
is needed to do the job. Remember, Super Utility Plus allows you 
up to eight bytes for each instruction sequence. As you have 
seen, that's more than enough for what's typically required. 

By the way, some people have found that on their systems, 
Super Utility works fine at high speed, even without adjusting 
timing loops to compensate for the speed-up. So it may be worth 
your while to experiment and find out what works for you. We'll 
get back to this in a few paragraphs. Now that we've got most of 

Copyright (c) 1983 by Breeze/QSD, Inc. 



20 INSIDE SUPER UTILITY PLUS 

the high-speed/low-speed stuff out of the way, let's go back and 
cover what we skipped: 

'DUAL=N'. Super Utility allows you to do a screen print at any 
time by pressing <SHIFT><CLEAR>. But some times, when using Super 
Utility you may want a printed record of all the information 
Super Utility presents to the screen. In such cases, turning on 
the DUAL mode is more convenient than frequent screen printing. 
The effect of DUAL is similar to the Model III's DUAL command, or 
LDOS's LINK *PR TO *DO statement. It causes all significant 
screen output to go to the printer as well. In Super Utility's 
configuration table, 'DUAL=Y' means DUAL is turned on 
(simultaneous screen and printer output) and 'DUAL=N' means that 
dual is turned off. 

Unlike the previous versions of Super Utility Plus, this new 
version automatically updates the configuration table depending 
on the disk that it finds in a drive. Thus the old SAVE parameter 
is no longer available, or needed. For instance, suppose drive 0 
is configured for a single density TRSDOS disk. But you decide to 
use drive 0 to do some zapping on a double density LDOS disk. You 
want to read track 5, sector 0. You tell Super Utility to do so, 
using the proper override command. A minute later, you want to 
read track 10, sector 1 of the same disk. You no longer have to 
repeat the override command. Otherwise, Super Utility, which has 
SAVEd the single density TRSDOS configuration, will be unable tb 
read the double density LDOS disk. For example, suppose you use 
CONFIGURATION to set up drive 0 for a single density TRSDOS disk. 
After you have done so, the drive zero· 1 ine of the configuration 
display should start with something like this: 

+0TS'=35, 

The TS indicates single density Model I TRSDOS. 
Later you use an override command to read a double density 

LDOS disk. After reading the LDOS disk, if you go back to the 
configuration mode, you will see that the line for drive zero now 
starts as follows: 

0LD'=35, 

The TS has changed to a LD to reflect that a double density 
LDOS disk was the last disk read in drive zero. You may now 
perform further operations on the LDOS disk without re-entering 
the override command. 

Sometimes, when you go to the ,configuration display, it may 
have changed, even though you haven't used any override commands. 
This can happen because Super Utility's automatic density 
recognition is also capable of updating the configuration 
information. Also, certain operations which involve a disk's 
directory are capable of passing a new track-count and DOS type 
back to the configuration module. 

Sometimes, as a result of an automatic configuration change, 
the DOS specifier in the configuration table will be replaced 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 21 

with a "U" followed by one or two asterisks {"*"). "U***" means 
"Unknown DOS." In other words, a "U**" in the configuration table 
indicates that Super Utility is no longer certain of the disk's 
resident operating system. 

To change an entry in the configuration table, the"=>" 
pointer must be pointing at the line you want to change. When you 
first enter the configuration module, the arrow will be pointing 
at the first line--the one we just discussed. To alter the line, 
simply retype it. 

At the bottom, of the configuration table is a question mark 
("?") followed by a dotted line. As you type the new 
configuration entry into Super Utility, your keystrokes will be 
echoed on the dotted line, so you can be be sure to spot any 
typing error. Correct errors by backspacing and retyping. Notice 
that you only type the variables. In other words, you don't type 
"SPEED=N", only "N,". Here's a line that would change each entry 
in the first line of our sample: 

N,Y,Y,N,X,Y,3E02D301,3E03D301 

This will result in the following update of the configuration 
table: 

DUAL=N, GRAPHICS=Y, LOCASE=Y, LINEFEEDS=N, DOUBLER=X, SPEED=Y 

This says that the high speed 'mod (if any) should be kept off, 
the DUAL mode is turned off, lowercase printing enabled, and 
graphics printing enabled. It also says that the computer is 
equipped with a Brand X (non-Radio Shack) doubler. The high speed 
on and off command sequences have been altered as well, but they 
do not show on the configuration line. 

Let's see what the new high speed on/off sequences say. The 
"on" command is the same as the previous one, except that it uses 
port# one instead of 254, and sends a two instead of a one. The 
"off" command likewise uses port one. It sends a three to that 
port. 

Now suppose you want Super Utility to start using DUAL mode. 
Instead of re-typing the whole command line, you can go to the 
configuration module and enter a single "Y". Super Utility will 
display 'DUAL=Y' at the beginning of the configuration table, and 
leave the rest of the line unaltered. In other words, when 
changing the configuration table, you need only type from the 
beginning of the line up through the part you're going to change. 
The rest of the line may be omitted. 

To change any other line of the configuration table, press 
<ENTER> until the"=>" character is pointing at the line you want 
to alter. Then retype the line and press <ENTER>. If you entered 
the data correctly, the line will be updated and the "=>" will 
point at the next line. If your attempted input was illegal, the 
"=>" will remain where it was and the line will not be updated 
past the point of the error. · 

Copyright (c) 1983 by Breeze/QSD, Inc. 



22 INSIDE SUPER UTILITY PLUS 

T.o go back to a higher line on the page, press <BREAK>, which 
takes you back to the top of the table. 

If you have a high speed modification, now you may want to 
try the experiment I suggested a few paragraphs back--namely 
getting Super Utility to run at high speed, without adjusting its 
timing loops. To do so, lie a little! Re-enter line one of the 
configuration table. But for the 'OFF' sequence, type in the set 
of instructions that actually turns your high speed on. Also, 
tell Super Utility to turn off high speed by setting the 
configuration table to 'SPEED=N'. 

Super Utility will think it has turned off your high speed 
clock, so it will not use its special timing loops. But in 
reality, it will have turned high speed on. Experiment {on a 
non-crucial disk, of course!) with various kinds of disk I/0. 
Also, test the timing of the key stroke auto-repeat in the Zap 
and Memory Modify modes. If all goes well, you may want to make 
this the normal mode of operation. 

'GRAPHICS=Y' indicates that it's capable of printing TRS-80 
graphics. If your printer doesn't have that capability, change 
the "Y" to an "N" and Super Utility will send dots to your 
printer, instead of graphics characters. If you have a printer 
like the EPSON MX-80, where the graphics codes are displaced from 
their normal positions, you may enter "M" here and Super Utility 
will automatically perform the needed adjustment. 

Use "Y" only if your MX80 has its own TRS-80 configuration 
switch set to the TRS-80 position. Super Utility will then 
"adjust" graphics characters before sending them to your printer. 
If your MX-80 doesn't have its TRS-80 switch set to the TRS-80 
position, the Epson responds like a "normal" printer, and Super 
Utility doesn't need to make any special adjustment. 

'LOCASE=Y' means that your printer can print lower case 
letters. If you change this to "N," Super Utility will convert 
all lower case to upper before sending it to the printer. 

'LINEFEEDS=N' indicates that your printer doesn't need a 
linefeed character sent after each carriage return. Most printers 
which can be used with a TRS-80 don't. If yours does, but Super 
Utility is configured to 'LINEFEEDS=N', then your printer will 
tend not to linefeed when it should, printing over the same part 
of the paper repeatedly. On the other hand, if your printer does 
not require the extra linefeed, and you have Super Utility 
configured to 'LINEFEEDS=Y', your printer will tend to skip lines 
and double space when it shouldn't. So if you have any doubt as 
to the linefeed requirements of your printer, just do a few 
experimental screen prints. 

The rest of the configuration table refers to any disk drives 
which may be on your system. You can have up to a maximum of four 
drives. If you have fewer, there will still be four entries in 
the table~ Soon you will see how to adjust the configuration 
table to let SU know how many (and which) drives are actually in 
the system. Let's look at the sample entry for drive zero: 

+:0 TlS' PTKS= 40 RTKS=40 DIR=l7 STP=3 RDLY=4 WDLY=4 WP=N 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 23 

D0=D DD=D LS0=1 HS0=09 LSD=l HSD=09 S/G=3 G/T=6 DD=I 

It is composed of two lines. The first line, . with one 
exception, contains information which you may alter directly by 
retyping the line. The second line contains "implied" 
information. It is derived from the data in the first line. The 
second line may be changed only by re-entering the first. 

The first character on line one may be either a plus, minus, 
or an equal sign ("+", "-", or "="). "+" indicates that the 
device exists and is "logged into the system" (in other words, 
Super Utility knows it is there). "-" indicates that, at least as 
far as Super Utility is concerned, the drive is not in the 
system. "=" indicates that the drive is in the system, and is in 
the "double-step" mode. The double-step mode is for an 80 track 
drive which will be used to read a diskette formatted on a 35 or 
40 track drive. Drives so configured will step twice, instead of 
once, for every track-step. 

There are restrictions to be observed 
double-step mode. In general, it's O.K. to read 
inadvisable to write. For fuller details, see 
Chapter. 

when using the 
in this mode, but 
the MISCELLANEOUS 

The second and third characters on the first disk line are a 
colon followed by a digit from zero to three. This simply 
identifies the drive number. 

The fourth through 7th characters are a DOS SPECIFIER. This 
declares four pieces of information about the diskette in the 
drive: 1) the TRS-80 model that it's for (I or III), 2) the 
density of the data on the disk (single or double), and 3) the 
operating system that formatted the disk (TRSDOS, LDOS, DOSPLUS, 
MULTIDOS, DBLDOS, or NEWDOS 80) and whether the disk is formatted 
as a single-sided disk or a double-sided disk. 

Your Super Utility Plus owner's manual has a table showing 
which letter declares what information. There are a few DOS's not 
mentioned in the table. Use "TS" for Newdos 2.1 (or Newdos Plus), 
and for single density Newdos-80. Also, if you have any NEWDOS 
2.1 disks which have been modified with Doublezap to make them 
double density, use "NlD" for them. 

You will have noticed that the DOS specifiers in this new 
version of Super Utility are considerably different from the 
previous versions. This version even gives you a choice of 
specifiers to use, in so you can pick the one most comfortable 
and meaningful to you. Here is the table of DOS specifiers for 
Version 3.0 of Super Utility Plus: 

SYSTEM Model I Model III 

TRSDOS 
Single Density T, Tl, TS, TlS * INVALID* 
Double Density TlD T3, TD, T3D 

LOOS 
Single Density L, Ll, LS, LlS L, LS, L3S 

Copyright (c) 1983 by Breeze/QSD, Inc. 



24 INSIDE SUPER UTILITY PLUS 

Double Density LlD (SOLE) L3, LD, L3D 

DOSPLUS 
Single Density D, D1, DS, DlS D, DS, D3S 
Double Density D1D (system disks) D3, DD, D3D 

MULTIDOS 
Single Density M, MS, Ml, MlS M, MS, M3S 
Double Density MlD (system disks) M3, MD, M3D 

NEWDOS/80 v.2 
Single Density N, Nl, NS, NlS N, NS, N3S 
Double Density NlD (Tk. " reversed)N3, ND, N3D 

DBLDOS 
Double Density B, Bl, BD, B1D 

There are several things to note about this 
first thing is that several of these specifiers 
Model I and Model III. For example, to specify 
Multi DOS disk, y regardless of 
computer was a Model I or a Model III. 

*invalid* 

table. The very 
are identical for 
a single density 

whether the 

are very machine 
I double-density 

LlD refers to a 
has had the SOLE 

Conversely, there are some specifiers which 
specific. TlD, for example, pertains to Model 
TRSDOS only (TRSDOS 2.70D). Similarly, 
double-density Model I LOOS disk which 
modification applied. 

Secondly, some specifiers under "Model III" can refer to Model 
I disks as well. An example of this is a double-density Model I 
DOSPLUS data disk, which is identical to a Model III DOSPLUS 
disk. In this case you would use DD, even if you were, reading it 
on a Model I. Other disks like this are LDOS double-density Model 
I data disks, and a double-density Model I MULTIDOS data disk. 

Thirdly, there are other characters which you can append to 
the DOS specifiers to further define their structure. An 
apostrophe (e.g., LlD') indicates that the diskette is formatted 
on one side only. A double-quote (e.g., DD") indicates a 
double-sided disk. NOTE: Double sided support is available only 
for LOOS, MultiDOS and DOSPLUS. This is not a matter of DOS 
chauvinism, but of simple lack of memory. These three DOS'es can 
be handled with the identical set of routines, but others, like 
NEWDOS/80, require a totally different set of routines for 
themselves, and the Super Utility program cannot accommodate them· 
without sacrificing badly-needed buffer space. 

For NEWDOS/80 double density disks, and MultiDOS P-density 
disks (Model I only), you must append the letter "R" after the 
DOS specifier. This indicates that the track scheme on the disk 
follows the DISK RELATIVE SECTORS scheme, in which relative 
tracks may overlap physical tracks. 

O.K. Let's focus on the first four characters for the first 
drive in our sample configuration table: 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 25 

+:0TS' 

The "+:0" says that there is a drive zero (0) in the system 
and that it's. not set to "double-step." The "TS'" says that the 
operating system on the disk is Model I TRSDOS, or a member of 
the Model I TRSDOS family (NEWDOS 2.1, or ULTRADOS). 

The item on drive zero's first line is PTKS= followed by a two 
digit decimal number which tells you how many physical tracks are 
present on the diskette in drive zero. In our example, the 
diskette is formatted to 40 tracks. Then comes "RTKS=" followed 
by a two digit number. It shows the relative track count for the 
diskette. The number of relative tracks will normally be equal to 
the number of physical tracks. The exception occurs with 
NEWDOS-80, DBLDOS, and MULTIDOS "P-density" disks which use Disk 
Relative Sectors (DRS). I will present more information on DRS in 
the MISCELLANEOUS Chapter. Since the disk in our example is Model 
I TRSDOS, the number or relative tracks equals the number of 
physical tracks. Hence "RTKS= 40." 

"DIR= nn" shows the number of the disk's directory track. On 
our sample disk, the directory is on track 17. When working with 
NEWDOS-80 or DBLDOS disks, it will show the relative, rather than 
the real, track number. 

"STP= ", "RDLY=" and "WDLY=" pertain to hardware timing 
constraints of the disk drive. The stepping time refers to the 
time it takes the read/write head to move from one track to the 
next. Some drives must be allowed 40 ms (milliseconds) per step. 
Others can get by with only 6 ms. Most drives can step within at 
most 20 ms. Super Utility gives you a choice of four stepping 
speeds per drive: 0=6 ms, 1=12 ms, 2=20 ms, and 3=40 ms. Our 
sample drive zero is set for "2," or 20 ms. 

Please make note of two facts: 
1) If a drive is configured to a single density DOS, it will 

not step faster than once every 12 ms, even if it's configured to 
the 6 ms speed. This is due to TRS-80 hardware design, and is not 
a bug in Super Utility. 

2) It will never do any harm to configure a drive for too 
slow a step-rate, except that disk operations will lag a bit. 
However, configuring too high a speed can result in extremely 
unreliable I/0. If you're using a fast step-rate and getting 
frequent "inexplicable" I/0 errors, try slowing the step-rate 
down to 40 ms. 

"RDLY" refers to the period of time it takes from the moment a 
drive turns on to the moment it stabilizes at full speed and 
Super Utility attempts to read from the disk. Conversely, "WDLY" 
refers to the period of time from the moment the drive turns on 
to the moment Super Utility attempts to WRITE to the disk. One 
second is an adequate allowance for most drives. Some come up to 
speed even more quickly. The new version of Super Utility allows 
you to adjust these settings by QUARTER-SECONDS. As with the 
stepping-rate, you're safe with a speed that's too slow, but not 
with one that's too fast. So if you have· problems, try slowing 
down. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



26 INSIDE SUPER UTILITY PLUS 

The delay is entered and displayed in quarter seconds. Some 
older versions of Super Utility allowed 2 settings at half second 
intervals. 

The sample drive zero is set to 4-quarter seconds (or one full 
second) delay. 

The final item on line one is 'WP=N.' "WP" stands for 
software write-protect. If you set it to "Y" for "Yes," Super 
Utility will act as if the disk in that drive had its write 
protect notch covered, and refuse to write to it. 

As stated earlier, the second line of drive data contains 
information implied by the first line. In our sample, the first 
item is 'D0=S.' This means that the density of TRACK 0 is single. 
'S' stands for "Single" and it specifies that track zero is in 
single density. This is meaningful because track zero doesn't 
always have to be the same density as the rest of the disk. This 
is especially true for double density Model I disks. The Model I 
requires track zero, sector zero of any bootable disk to be in 
single density, even if the rest of the disk is in double 
density. So some Model I double density operating systems 
(DOSPLUS, for example,) have a single density track zero. This 
makes double density DOSPLUS diski bootable on a Model I. 

Other Model I double density DOS's (like LOOS) require track 
zero to. be the same density as the other tracks on the disk. This 
has the advantage of being consistent, and leaving a little more 
room on double density disks; but if you want to run LDOS with a 
double density diskette in drive zero, you have to boot in a 
single density LDOS disk and then swap. 

Recently, however, MISOSYS in Alexandria, VA came up with a 
modification system called SOLE which places a single density 
track 0 on a double-density LDOS Model I system disk. Previous 
versions of Super Utility did not recognize this form. This 
version, however, knows enough to look for a SOLE-type disk if 
the DOS specifier LlD' is given. 

NEWDOS-80 allows you more or less full flexibility. You may 
have a track zero of either density, regardless of the density of 
the other tracks. But Super Utility doesn't support all such 
possible NEWDOS-80 configurations. For discussions of which are 
supported, see the MISCELLANEOUS Chapter of this book, and note 
13 in your Super Utility manual. At any rate, the diskette in our 
sample drive zero contains Model I TRSDOS, so track zero, like 
all the other tracks, is single density. 

The next bit of information is 'DD=S.' 'DD' stands for 
"Density of Disk." This indicates what the density of the REST of 
the disk (track 0 excepted) is. 

Follpwing this is 'LS0=0' and 'HS0=09'. LS0 stands for "Lowest 
sector on Track 0." HS0, conversely, means "Highest sector on 
track 0. In every DOS except Model III TRSDOS, the first sector 
on each track is zero. Model III TRSDOS doesn't use a sector 
zero, so the first sector of each of its tracks is one. And 
because of this, the highest sector has to be 18 instead of 17 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 27 

like everyone else's double density track. In our example, since 
we are looking at a single-density disk, the highest sector is 
naturally 9, since sector numbers go from 0 to 9. 

Next we have 'LSD=0' and 'HSD=09.' These two items tell you 
the lowest and highest sector number on the rest of the disk. 
Unless a disk is one of the mixed-density types, these two values 
will be the same as LS0 and HS0. 

The next item is 'S/G=S.' This tells you the number of sectors 
per granule there are on the disk. Remember that "granule" is a 
totally arbitrary term, and its size varies depending on whether 
the disk is formatted in single or double density, and whether 
the DOS is TRSDOS 1.3 or something else. TRSDOS for the Model III 
uses 3 sectors per granule, half the size of everyone else's 
granule. 

Related to this is the next item: 'G/T=2'. G/T stands for 
"Granules per track." Since the number of sectors on a track are 
pretty much fixed (10 for single density and 18 for double) the 
number of granules per track will vary depending on granule size. 
It will .also vary depending on whether the standard track scheme 
or the Disk Relative Sectors scheme is being used. 

Finally, we have 'DD=S'. DD stands for Data Address Mark of 
Directory. See the Technical Introduction for more information on 
DAM's. The DAM's being referred to here are the non-standard 
DAM's to be found on the disk. Usually, non-standard DAM's are 
used only for directory sectors. The only known exception is 
Model III TRSDOS which reverses things. It uses standard DAM's in 
the directory and Read Protected DAM's everywhere else. 

'DD=S' indicates that the directory DAM's are of the Read 
Protected variety and every other track uses standard DAMS. This 
is the Standard Scheme, hence the "S." This is the scheme used by 
every DOS except TRSDOS 1.3. TRSDOS 1.3 will show DD=I, to 
indicate "Inverted DAM scheme." 

Now let's take a quick look at the other three drives in our 
sample configuration table. The two lines for drive one read as 
follows: 

+:l T3D' PTKS= 80 RTKS= 80 DIR= 40 STP=0 RDLY=2 WDLY=2 WP=N 
D0=D DD=D LS0=1 HS0=18 LSD=l HSD=l8 S/G=3 G/T=6 DD=I 

The information on line one indicates that we have, in drive 
one, a Model III TRSDOS £amily disk with 80 physical tracks and 
80 relative tracks. The directory is on track 40. The drive 
read/write head can step from track to track within 6 ms, and the 
drive should come up to speed within half a second before I/0 is 
attempted. 

Line two describes a double density disk with logical grans. 
Track· zero is in double density; the starting sector of each 
track is sector one, and the directory Data Address Marks use the 
Inverted scheme. 

Now for drive two: 

=:2 LIS' PTKS= 35 RTKS= 35 DIR= 17 STP=0 RDLY=2 WDLY=2 WP=Y 

Copyright (c) 1983 by Breeze/QSD, Inc. 



28 INSIDE SUPER UTILITY PLUS 

D0=5 DD=S LS0=0 HS0=09 LSD=0 HSD=09 S/G=S G/T=2 DD=S 

The"=" at the beginning of line one indicates that drive two 
is an 80 track drive (narrow track width) containing a diskette 
which was formatted on a 35 or 40 track drive (full track width). 
The rest of line one shows that the diskette was formatted with 
LOOS, has 35 physical tracks and 35 relative tracks. Its 
directory is on track 17. The drive can complete a track-step 
within 6 ms and comes up to speed within half a second. It is 
software write protected. 

Line two indicates that the diskette is in single density and 
has 5-sector grans. Track zero is in single density, the starting 
sector of each track is zero, and the directory uses the Standard 
DAM scheme. 

And finally, drive three: 

-:3 NlD' PTKS= 35 RTKS= 63 DIR= 17 STP=3 RDLY=4 WDLY=4 WP=N 
00=5 DD=D LS0=0 HS0=09 LSD=0 HSD=09 S/G=S G/T=2 DD=S 

The minus ("-") at the beginning of line one indicates that 
there is no drive three in the system, so the rest of the drive 
data is of little consequence. However, if the drive described 
were logged onto the system, line one indicates that it would be 
conffgured to read ·a NEWDOS-80 diskette with 35 real, or 
physical, tracks and 63 relative tracks. The directory is shown 
to be on relative track 17. The step speed of the drive is 40 ms 
and the drive requires a full second delay for both reads and 
writes •. 

Line two describes a double density diskette with illogical 
grans. Track zero is single density. The first sector of each 
track is sector zero, and the directory has Read protected Data 
Address Marks. 

As I said earlier, some Super Utility users seem to have 
trouble setting ·up the configuration table for their own drives. 
The difficulty nearly always is the result of misunderstanding 
how the data is entered. Here are three simple rules to follow. 
They all apply when· you're changing the the lines in the 
configuration table which pertain to the drives: 

Rule il~ The first thing you must enter for a drive is either 
a DOS specifier (see the table above) or"+", "-"tor"=". 

,People often forget this when they want to change the number 
of physical tracks on a drive. Let's consider an example. Suppose 
our configuration table shows drive one as follows: 

+:1 T3D' PTKS= 40 RTKS= 40 DIR= 17 STP=0 RDLY=2 WDLY=2 WP=N 
D0=0 DD=D LS0=1 HS0=18 LSD=l HSD=l8 S/G=3 G/T=6 DD=I 

To change the number of tracks from 40 to 35, the first thing 
to do is to get the modify arrow down to where it's pointing at 
the"+". So hit <ENTER> until you see the following: 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 29 

=>+:1 T3D' PTKS= 40 RTKS= 40 DIR= 17 STP=0 RDLY=2 WDLY=2 WP=N 
D0=D DD=D LS0=1 HS0=18 LSD=l HSD=18 S/G=3 G/T=6 DD=I 

Now here's where people have gone wrong. They type "35" and 
press <ENTER>. Super Utility rejects this input and waits for 
them to try again. The correct thing to enter is "T3D' 35". 
"+T3D' 35" would also work, but the "+" is unnecessary. If you 
want, you may also put a comma between the "T3D'" and the 
"35"--e.g. "T3D',35" or "+T3D',35". But again, this is 
unnecessary. 

Rule i2: The second line of information for each drive is 
implied information. You can change it only by changing line one. 

Rule #3: Line one has two track-counts. The first is for 
physical tracks, the second for relative tracks. Line one's 
second track-count ('RTKS= ') is implied, like the data on line 
two. It can be changed only by altering track-count #1 or the DOS 
specifier. 

Let's go back to the previous example. We want to change 

+:1 T3D' PTKS= 40 RTKS= 40 DIR= 17 STP=0 RDLY=2 WDLY=2 WP=N 

to 

+:l T3D' PTKS= 35 RTKS~ 35, DIR= 17, STP=0, RDLY=2 WDLY=2 WP=N 

Here's a WRONG way to enter the information: 

TD 35,35 

People sometimes make the mistake of entering "35" twice, 
since they want both 40's in the target line to be replaced by 
35's. But the first 35 entered will change both 40's to 35's. If 
you enter "35" twice, Super Utility will think you want it to use 
the second 35 for the drive's directory track. The correct way to 
enter the change is 

T3D 35 or TD,35. 

Here's an input line that will change every item on line one 
in this example.: 

=NlDR 35,20,3,4,4,Y 

The"=" sets the drive to double-step. The NlD specifies a 
double density NEWDOS-80 operating system with a single density 
track zero. The "35" specifies a 35 track diskette. Since 
NEWDOS-80 uses Disk Relative Sectors, the combination of NlD with 
"R" and "35" sets the relative track-count to 63. The 20 tells 

Copyright (c) 1983 by Breeze/QSD, Inc. 



30 INSIDE SUPER UTILITY PLUS 

Super Utility that the directory is on track 20. Since this is a 
DOS that uses data relative sectors, the "20" indicates relative 
track 20, not physical track 20. The "3" sets the drive to a 40 
ms stepping speed. The two "4's" set the drive for 4 half-seconds 
(one full second) delay on both reads and writes. And the "Y" 
turns on software write-protect for drive one. 

The new information in the configuration table will look like 
this: 

+:l NlDR PTKS=35 RTKS= 63 Dir= 20 STP=3 RDLY=4 WDLY=4 WP=Y 
D0=S DD=D LS0=0 HS0=9 LSD=0 HSD=9 S/G=5 G/T=2 DD=S 

Notice that line two 
diskette with illogical 
single density track 0. 

has also changed. It now indicates a 
grans, a starting sector of zero, and a 

Using the configuration module to reconfigure Super Utility is 
called "soft configuring." Every time you boot Super Utility the 
original configuration will be restored and you will have to 
reconfigure Super Utility for your system. You may prefer to have 
Super Utility boot up preconfigured to your specifications. In 
the old version, you could accomplish this by zapping certain 
sectors of your Super Utility disk. This is no longer necessary 
in Version 3. 0. 

After you have finished configuring your drives, you will see 
a new prompt at the bottom of your screen, and it will say, "Save 
Configuration?" If you reply "Y," you will be asked to place 
your Super Utility Disk in drive 0. When you have done so, press 
<ENTER> and the new configuration information will be written to 
the disk. 

Note that this method of configuration does not allow you to 
change things that you could formerly change in the older 
versions of the program, such as the disk name, the format 
patter, etc. However, it isn't really necessary to change these 
anyway, and this new save feature is much easier to use 
especially if you're new to Super Utility Plus! 

After you've saved your configuration, it will always be 
established whenever you boot up the system. At present, there's 
no way to override the saved configuration and restore the 
defaults, so make sure the configuration you save is one that 
you'll be using most often. 

One last word about the high-speed clock control sequences. 
Super Utility uses port 254 in conjunction with its clock speed 
control. Therefore, any port 254 initialization which you do may 
be countered by Super Utility when it initializes the clock. You 
should use the "ON" and "OFF" sequences in the configuration to 
achieve the net effect that you want. 

I'll consider two examples:!) You have a high speed mod and a 
reverse video mod, each of which uses port 254. 

2) You no high speed mod, but you do have a reverse video mod 
which uses port 254. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 31 

In example #1, you have a high speed mod. The least 
significant bit of any value output to port 254 controls the 
speed. In other words, OUT 254,1 turns on high speed and OUT 
254,0 restores normal speed. This is a fairly standard way of 
doing things. Now, suppose you also have a reverse video mod 
which is controlled by the second least significant bit of any 
value output via port 254. In other words, OUT 254,2 would turn 
on reverse video, and OUT 254,0 switches back to the normal 
display mode. As a final supposition, let's assume that you would 
like Super Utility to come up in both reverse video and high 
speed. To turn both on simultaneously, a value with both the 
least significant and second least significant bits set must be 
sent to port 254. OUT 254,3 would do the trick. So all you have 
to do is configure Super Utility to 'Speed =Y' and the 'ON' 
sequence to 3E03D3FE. 

This disassembles as 

LD A,03 
OUT 254,A 

The net effect is to send a "3" to port 254. 
It would probably also be a good idea to configure your 'OFF' 

sequence to 3E02D3FE. This disassembles as 

LD A,02 
OUT 254,A 

The net effect of this code is to send a two to port 254. The 
advantage, in this case, of turning off the high speed clock with 
a two rather than a zero, is that the two won't turn off the 
reverse video as well, whereas a zero would. Example #2 assumes 
that you have no highspeed mod, but you do have a reverse video 
mod which is turned on and off with the instructions OUT 254,1 
and OUT 254,0. You want Super Utility to turn your reverse video 
on, and keep it turned on. 

The easiest thing to do is to 
Super Utility that you don't have 
Super Utility that 'OFF' will 
254,1. This will keep your reverse 

use the configuration to tell 
a high speed mod. Also tell 

be 3E01D3FE' or in effect, OUT 
video turned on. 

Saving the configuration table is one of the TWO times that 
you need to have your Super Utility Plus disk in the drive. The 
other time is when the program is booted. There are no other 
times when you need to have Super Utility in a disk drive, since 
the program is totally self-contained. You should get into the 
habit of removing your Super Utility disk from the drive as soon 
as the program is booted op, or as soon as your configuration has 
been saved. Kim and PowerSoft receive many calls from people who 
inadvertently format over their Super Utility disk because they 
left it in drive 0 and forgot it was there. This kind of mistake 
can cost you money and lost time. So make sure that after your 

Copyright (c) 1983 by Breeze/QSD, Inc. 



32 INSIDE SUPER UTILITY PLUS 

Super Utility program is booted up, you take the disk out of
drive 0 and tuck it away in a safe place. 

The new Super Utility comes with three separate boots, but 
only two are available for use at any one time. Remember, your 
copy of Super Utility will load and run on both the Model I and 
Model III. Because you may need to use a mixed-density disk on 
the Model I to boot up in double density, there is one special 
boot which will let you do just this. The other two consist of a 
Model I boot and a Model III boot. That way, no matter which 
machine you're working on at any given time, you may repair disks 
belonging to either model and you also have the added flexibility 
of using a boot that can correctly load a file from a double 
density track on a Model I. 

Kirn felt that if you work on both models, you may have a 
different set of disks containing different operating systems 
with each model. Therefore, you might need a separate set of 
repair-boots for each. 

Whenever you use Super Utility's Repair BOOT Sector option, 
Super Utility will now write the appropriate boot to the target 
disk, depending on the configuration setup for that drive. The 
Model I boot gets put on track zero, sector zero, where the Model 
I would expect to find it. The Model III boot is placed on track 
zero, sector one, where the Model III expects to find its boot. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 33 

Chapter III 
WHAT TO DO WITH A MYSTERY DISK 

When Super Utility won't behave, the reason is almost always 
the same. The program is not configured correctly for the disk(s) 
being worked on. If you don't understand Super Utility's 
configuration module, the previous chapter of this section of 
this book zooms in on the topic. 

If you understand the configuration process, you may still 
feel caught up in a kind of Catch-22. Super Utility won't read 
your disk unless you first configure correctly. You can't 
configure until you know some facts about the disk--such as the 
computer it's supposed to run on (Model I or III), what DOS it 
contains, whether it's single or double density, how many tracks 
it has, where the direc~ory is located, and whether it was 
created on a 40 or 80 track drive. You can't get this information 
until Super Utility lets you look at the disk. So where do you 
start? 

If you have no idea of what a disk contains, density-wise, 
DOS-wise, and every other -wise, you have two options. Version 
3.0 of Super Utility has an automatic DOS recognition feature 
which you can invoke. From the ZAP menu, select Display Disk 
Sectors and enter the drive number preceded by an exclamation 
point (for example, !0). Super Utility will then try to identify 
the disk both density-wise and DOS-wise. This feature is 
available in Display Disk Sectors and any other procedure which 
accesses a disk's directory. It will take a minute or two, and 
it's not always 100% reliable, but if it succeeds, then the 
configuration table will be automatically updated, and your 
worries are over. 

If the automatic DOS recognition system fails, then you have 
to fall back on more manual methods. Use Zap's Read ID Address 
Marks command (option 11 from the Zap menu). This can give you a 
good deal of information about the disk. Here's the procedure. 

Go to the configuration module and reconfigure the drive 
you're going to use as follows: configure the drive to be in the 
system. Do not set it to double-step, and make sure it's 
configured to the highest possible number of tracks the drive is 
physically capable of supporting. For instance, suppose you're 
going to use drive one and it's an 80 track drive. You look at 
the configuration table and press <ENTER> until get the"=>" gets 
down to the line for drive one. Then enter 

+TS,80 

Copyright (c) 1983 by Breeze/QSD, Inc. 



34 

In this case, 
think the DOS 
DOS specifier. 

INSIDE SUPER UTILITY PLUS 

the "TS" is a dummy parameter, it doesn't mean we 
is TRSDOS. You could just as well enter any other 

Make sure the configuration table has been updated correctly. 
Then press <SHIFT><BREAK> to return to the main menu. Press 
<ENTER> to go to to the Zap utility. Then enter "11" to select 
the "Read ID Address Marks" function. Finally, enter "l" to 
choose drive one. Super Utility will now try to read the DAM's 
for drive one, track zero. 

There are two major possibilities: 

Possibility #1. Super Utility completely or partially succeeds 
at reading track zero's DAM's. If it succeeds completely, the 
screen will be filled with a scrolling display under all the 
headings except the last three (if there is information under the 
last three headings as well, hold down the <X> key until that 
data disappears--see note 1). 

If Super Utility has partial success at reading track zero's 
ID address marks, you will see information scrolling up the 
screen, interspersed with error messages. 

Possibility #2. Super Utility is completely unable to read 
track zero's ID address marks. Error messages appear on every 
line of the display. 

If Super Utility can read track zero, make note of its 
density. The density is indicated by either an "S" for "Single," 
or a "D" for "Double," in the the column under the "u" of the 
word "Source." 

If Super Utility can't read track zero, it could mean any of 
several things. Assuming your system is in good repair, you might 
be trying to read an unformatted disk. If your system doesn't 
have a double density board, you might be trying to read a disk 
whose track zero was formatted in double density. Or you might be 
trying to read a badly farkled (or messed up) disk. 

Hold down the up-arrow key. Super Utility will attempt to 
read subsequent tracks. If it succeeds with all tracks other than 
zero, and your system doesn't have double density, you may be 
trying to read a NEWDOS-80 disk which was created with a double 
density track zero, but with all the other tracks formatted in 
single density. However, it's unlikely anyone would format a disk 
in such a manner. What is more probable is that something farkled 
track zero without affecting the rest of the disk. 

If Super Utility succeeds at reading track zero, there are 
two special "wrong drive-type" patterns to be alert for. In one, 
the track number shown under the heading "Track" increases by 
twos, while the track count under the heading "Source" increases 
by ones. This probably means you're using a 35 or 40 track drive 
to read a disk which was formatted in an 80 track drive. Try 
switching the diskette to an 80 track drive and starting again. 

In the other "wrong drive-type" pattern, the track count in 
the "Source" column goes up by twos, while the track count in the 
"Track" column goes up by ones. Also, every other time the head 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 35 

steps (you should hear a tick from your disk drive each time it 
steps}, you will get a series of "ID Read Error" messages. This 
indicates that you're using an 80 track drive to read a diskette 
which was formatted in a 35 or 40 track drive. Either switch the 
disk to a suitable drive, or go back to Super Utility's 
configuration module and configure the drive you're using to 
double-step (use an equal sign ("="}). 

Once you have Read ID Address Marks happily reading your 
disk, hold down the <X> key until Super Utility starts filling in 
the last three columns of information (see note 1). Keep your eye 
on the "Data" column. This tells you the DAM type for each sector 
on the track. Now press the up-arrow repeatedly to step through 
the tracks (See note 2). With any DOS other than Model III 
TRSDOS, the "Data" entry for all non~directory sectors should say 
'S>td,' for "standard." When the entries in the data column 
change from S>td to 'R>ptc' (for "read protected") or 'U>df' (for 
"user defined"), you have located the directory track. With 
TRSDOS III, things are switched around. The directory has 
"standard" DAM's and the rest of the disk has "read protected" 
DAM's. 

The directory will usually be on track 17 decimal for 35 or 
40 track diskettes. For 80 track disks, the directory is normally 
on or near track 40. If the DAM was "U>df," you're looking at an 
LDOS disk. "R>ptc" indicates any operating system other than 
LDOS. 

While looking at the directory track, use the space bar to 
freeze the action. Look for the lowest numbered sector. If you 
don't see a zero, start the scrolling again by pressing <ENTER>, 
and freeze it with <SPACE> again. Repeat this procedure several 
times, each time checking for the lowest numbered sector visible 
on the display (you might not catch the track's lowest sector on 
the screen the first few tries). If the lowest sector you can 
find is one, you're probably looking at a Model III TRSDOS 
diskette. All other standard DOS's should start each track with 
sector zero. 

Another thing to watch for is whether the directory, as 
revealed by the change in DAM's, starts at the beginning of its 
track, or somewhere in the middle. If the directory doesn't 
occupy the whole track, then you'll see some sectors with S>td 
DAM's, and other sectors in the same track with R>ptc DA.M's. In 
that case, the directory will probably "wrap around" and occupy 
some of the next track as well. When this occurs, you may be 
fairly certain you're dealing with NEWDOS-80 or DBLDOS. 

Take note of the number of the directory track(s), and its 
density. Then, press <X> to go back to mode one (see note one). 
Hold down the up-arrow and let auto repeat take over. The read 
write head should step in track by track. 

When you reach a track whose ID marks can't be read, Super 
Utility will "stick." If you get an error message that says "Not 
Formatted," or "ID Read Error," and Super Utility doesn't find 
any sectors for that track, you may have past the last formatted 
track. If the source track is 35, 40, or 80, this is especially 

Copyright (c) 1983 by Breeze/QSD, Inc. 



36 INSIDE SUPER UTILITY PLUS 

likely. To be certain, you may try forcing the head to search for 
more tracks further toward the center of the disk. To do this, 
press the up-arrow a few times. 

When you have found and noted down the last track on the 
disk, there are a couple of other places on the disk to 
inspect--the Boot and GAT sectors. Start by pressing 
<SHIFT><BREAK> to get back to the main menu. Then go to the 
configuration program. Configure the drive you're using to the 
correct density, track number, and directory track number your 
inspection has revealed. 

Here's how to configure for the DOS. First of all, you may 
have already discovered which DOS the disk contains. If the 
directory had U>df DAM's, then the DOS is LOOS. Use "LS" if the 
tracks were in single density, and "D" if they were double. If 
there were no sector zeros, then the DOS is .Model III TRSDOS. use 
II TD. II 

If the directory started in the middle of a track and wrapped 
around to the next track, the DOS is NEWDOS-80 or DBLDOS. If 
track zero is single density and the rest of the disk is double, 
you won't be able to determine which of the two it is until you 
examine the GAT. Use "B" in the mean time. If track zero is 
double density, NEWDOS-80 is indicated. use "NDR." If you don't 
know the DOS, use "TS" for any all single density disk, "LD" for 
an all-double density disk, or "DlS" for a double density disk 
with a single density track zero. 

Go to Zap's Display Sector program. When prompted with 
"Drive, Track, Sector", input the target disk's drive number, and 
default on the other two values. Super Utility will display track 
zero, sector zero or one, depending upon whether you're looking 
at Model III TRSDOS or some other DOS. 

If the sector you see is mostly zeros, you're looking at a 
data (or non-system, or non-booting) disk. If the sector is full 
of data, you may be looking at a booting disk, or it might still 
be a data disk. You should also see an all too familiar message 
or two near the end of the sector--"DISK ERROR" or "NO SYSTEM." 

While you're looking at the boot sector, look at the third 
byte. For most DOS's, that should contain the number of the 
directory track. If it doesn't agree with the number you came up 
with when you used Read ID Marks, it could mean one of two 
things. 

l) You may be confused because Read ID Marks gave you the 
track number in decimal, but the byte in the boot sector in. in 
hex. Convert the number base of one of the values and see if they 
agree after all. 

2) You may be looking at. a DBLDOS, NEWDOS-80, or TRSDOS III 
disk. These are the only DOS's whose third byte on the boot 
sector doesn't have to point at the directory. DBLDOS has no 
directory pointer at all. TRSDOS III uses the second boot-byte, 
rather than the third, as the directory pointer. 

Double density NEWDOS-80 disks with single density track 
zeros maintain a second boot sector at relative track zero, 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 37 

sector zero. This happens to be the same as physical track one, 
sector zero. It is this second boot whose third byte is required 
to point to the directory track. 

3) You may be looking at a NEWDOS-80 disk. Boot byte three is 
pointing at the directory, all right. But since it uses 
"illogical" tracks, it won't seem to be pointing where we would 
expect. 

You might think that if the answer were (3), w~'d have already 
known that we were looking at NEWDOS-80. After all, when we ran 
Read ID Marks, we'd have discovered the directory to be spread 
across two tracks. However, this particular NEWDOS~80 disk might 
just happen to have its directory contained within a single 
physical track despite its "illogical grans". If such were the 
case, we wouldn't yet know what we were dealing with. 

The next thing to do is use Zap to look at the GAT 
sector--the first sector in the directory. The GAT sector 
contains the disk name, date, the hash of the master password 
(which will probably be unrecognizable), and the AUTO command (if 
any). There is a good chance that the disk name will identify the 
DOS for us. This is especially true if the, disk is a system, 
rather than data diskette. 

If you go through the whole rigmarole described above and 
still don't discover what kind of disk you're looking at, try 
zapping through the disk. System modules usually have ASCII 
copyright messages embedded in them. 

When you know the disk's DOS, density, track-count, etc, go 
to the configuration module and update the configuration table to 
incorporate all the hot new information. Finally, run Zap's 
verify program and Disk Repair's Check Directory program. While 
you're in the Disk Repair menu, use option eight to display the 
diskette's directory. If it has lots of "/SYS" files ("/DOS" 
files on Multidos), you're probably looking at a system disk. If 
only BOOT/SYS and DIR/SYS are listed, you've got a data disk. By 
now you should have a comprehensive picture of the mystery disk. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



38 

Chapter IV 
DISK ERRORS 

INSIDE SUPER UTILITY PLUS 

Before getting too deeply into errors and error recovery, 
there is one point I would like to emphasize. Super Utility's 
features far exceed the capacities of competing programs, but it 
can't do miracles. So don't get overconfident. The most important 
step you can take to avoid the loss of crucial data is 
preventive. Please make backups. 

Another worthwhile prophylactic measure is to periodically 
perform a Verify Sectors and Format without Erase on all 
important disks. In other words, pretend a problem exists and 
follow the problem recipe outlined below. This may seem a lengthy 
process, but it is a time-investment which, in the long run, may 
save you many more hours than you put in. 

One simple way to classify disk errors is to break them up 
into two categories--minor and drastic. Minor errors are those in 
which only a small number of bytes have been clobbered. Drastic 
errors indicate massive alteration or obliteration of disk data. 
Super Utility can correct most minor disk errors. But when 
drastic errors occur, you'd better have those backups handy. 

The techniques I'll be describing here deal with the repair 
of errors which fall into the "minor" category. When a minor 
error occurs, it usually restricts itself to one of the two 
subfields of one sector. I will refer to errors in the header 
subfield as header errors, and errors in the data subfield as 
data errors. Another way to lump errors into categories is to 
separate them into errors which occur in the directory and errors 
which occur elsewhere on the disk. Directory errors may be much 
more critical than others, or they may be much simpler to deal 
with, depending on whether or not they're in one of the first two 
directory sectors. 

The first two directory sectors contain the Granule 
Allocation Table (GAT) and Hash Index Table (HIT), respectively. 
The unique thing about these tables is that the crucial 
information they contain may be derived from the other directory 
sectors. Therefore, if one or both of these sectors is wiped out, 
Super Utility can reconstruct them for you, almost completely 
automatically--as long as the rest of the directory is intact. 
Now that we've had a quick overview of the taxonomy of disk 
errors, let's take a closer look at header errors. One insidious 
thing about them is that, though they are minor in the sense of 
only involving a byte or two, they are still drastic in the sense 
of being nearly impossible to fix. A sector which contains a bad 
header may be made usable, by Format without Erase. But the data 
in the bad sector might be beyond recovery. Remember, the header 
contains four bytes of information which identify and define a 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 39 

sector--namely the track number, head number, sector number and 
sector length. These bytes, you will recall, are preceded by a 
one byte ID mark, namely FE hex, and followed by a two byte CRC. 
Any alteration to the data in this area makes it impossible for 
DOS or other software to access the sector in question; usually 
the afflicted sector can't even be located! 

When a sector becomes totally lost to DOS, trying . to access 
it results in error messages like: "Sector NOT FOUND" (this is 
Super Utility's own error message), "SEEK ERROR DURING READ" 
(TRSDOS error 02), or "SEEK ERROR DURING WRITE" (TRSDOS error 
10). The message you get may vary, depending on the DOS (or other 
software) attempting the disk I/0. 

NOTE: All the DOS error numbers in this section are in 
decimal. 

If a header CRC error occurs, DOS may be able to find the 
sector, but the data it contains will still be inaccessible. This 
is because the FDC generates an interrupt when it detects the 
error condition, and doesn't read any further. In such cases, you 
may get a message such as "Sector NOT FOUND, ID CRC Error" (Super 
Utility's message), "PARITY ERROR DURING HEADER READ" (TRSDOS 
error 01), or "PARITY ERROR DURING HEADER WRITE" (TRSDOS error 
09) • 

One thing about these errors you should be aware of is that, 
despite the error messages, they are not parity errors, in the 
normal sense, but CRC errors. "Parity" usually refers to a one 
bit flag which indicates an odd or even number of one-bits in a 
given byte. The CRC is a 16 bit indicator which reflects a great 
deal more than a one-bit count. 

If you get a header (or ID) error, it's time to go for the 
backup. If you don't have a backup, and are really desperate to 
recover the data, you may be able to do so, at least partially. 
The method involves doing a track read, printing out the result, 
reformatting (without erase) the track with the problem sector, 
and re-entering the lost data by hand, using the Modify Mode of 
Zap's Display Sector module. This is a somewhat laborious 
procedure, and it often doesn't succeed. However, it's a 
worthwhile last ditch attempt to recover from a variety of 
wipeouts. I describe the procedure in detail under the heading 
TRACK RESCUE. Errors which affect a sector's data subfield may be 
much easier to deal with. If the Data Address Mark got clobbered, 
you're out of luck--it's like an error in the header subfield; 
the sector may be totally lost. DOS will tell you something like 
"DATA RECORD NOT FOUND DURING READ" (TRSDOS error 05) or "DATA 
RECORD NOT FOUND DURING WRITE" (TRSDOS Error 13). Super Utility 
will probably give you the good old "SECTOR NOT FOUND" error 
message. The exception to this is an error in which the DAM gets 
changed into one.of the other legal DAM bytes (there are four 
possible DAM'S for the Model I, and 2 for the Model III). In such 
a case, Super Utility will be able to restore the disk. 

By the way, don't confuse the "DATA RECORD NOT FOUND DURING 
READ" type message with one like "LOST DATA DURING READ" or "LOST 
DATA DURING WRITE" (TRSDOS errors 03 and 11, respectively). These 

Copyright (c) 1983 by Breeze/QSD, Inc. 



40 INSIDE SUPER UTILITY PLUS 

are two entirely different kettles of error. "LOST DATA" doesn't 
necessarily indicate anything wrong with the diskette at all. It 
means that the CPU couldn't catch the data as fast as the FDC was 
grabbing it from the disk. The problem is often that the drive is 
spinning too fast. Have it timed! 

Except for clobbered DAM's, a data subfield error may be 
fixed relatively easily. Super Utility's message, when it 
encounters such a sector, is "DATA CRC Error." DOS may present 
you with a message like "PARITY ERROR DURING READ" (TRSDOS error 
04) or "PARITY ERROR DURING WRITE" (TRSDOS error 12). 

Here's a recipe for dealing with problem disks: 

PROBLEM RECIPE 

1) Follow the 
DISK". This will 
Utility's "Verify 
recipe. 

instructions under the heading "VERIFYING A 
show you how to test the disk with Super 
Sectors" program. Then come back to this 

A) If the final 
sectors," even though 
sectors, follow the 
WITHOUT ERASE". 

result of "Verify Sectors" is "0 bad 
you may have needed several retries on some 

instructions under the heading "FORMAT 

B) If the final result of "Verify Sectors" is more than zero 
bad sectors, then follow the instructions under the heading 
"STUBBORN ERRORS." 

2) Follow the instructions 
Repairs. 

END OF PROBLEM RECIPE 

under the heading Directory 

One other error message which DOS may occasionally give you is 
"ATTEMPTED TO READ SYSTEM DATA RECORD" (TRSDOS error messages 06 
and 07). According to the TRS manual, this is usually the fault 
of a user program. What is actually happening is that DOS is 
trying to read a sector which has incorrect DAM's. This could 
happen under a number of circumstances. One possible cause could 
be your using Super Utility's Read Protect Directory program and 
give the wrong address or length for the directory. The careless 
use of Zap's Alter Data Address Marks could have the same effect. 

To overcome the problem, use Zap's Read ID Address Marks to 
locate all sectors with incorrect DAM's. Remember, except with 
Model III TRSDOS, all non-directory sectors should have 
"standard" DAM's. Model III TRSDOS should have "standard" DAM's 
in the directory and "read protected" DAM's everywher~ else. Use 
the Alter Data Address Marks option to correct aberrant sectors. 

VERIFYING A DISK 

If your disk seems to have errors, boot up Super Utility, go 
into Zap, and use the Verify Sectors program (Zap selection #2) 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 41 

to go over the problem disk. If Super Utility isn't configured 
correctly for the target disk, be sure to use the proper DOS and 
track-count overrides with the verify command. 

Each time verify Sectors reports an error, make a note of the 
track and sector number displayed, and the type of error. If you 
have a printer, instead of taking notes, you can set 'DUAL=Y' 
from the configuration module, before starting this procedure. 
Retry reading each problem sector several ral times (if you're 
desperate, use the <C>ontinuous or <N>onstop selections and retry 
every problem sector for a couple of minutes). 

At this point I would like to establish a couple of 
definitions: 

1) From now on, I will refer to problem sectors which Super 
Utility succeeds at reading• after some retries as compliant 
problem sectors. 

2) I will refer to sectors which Super Utility can not read, 
even after a large number of retries, as stubborn problem 
sectors. 

As you note down each problem sector, also record whether it 
is compliant or stubborn. If a problem is stubborn enough to defy 
four or five read attempts, you can usually write it off as 
completely stubborn. Compliant problem sectors may be repaired 
automatically by the Format without Erase routine. But Format 
without Erase will be one of the · last steps in fixing your disk, 
because a premature Format without Erase can make it impossible 
to fix certain stubborn problems which other techniques might 
save. 

When verify Sectors is finished, it will display 
of stubborn sectors (it will call them bad sectors). 
this number, and return to the Problem recipe. 

FORMAT WITHOUT ERASE 

the number 
Take note of 

WARNING: It is extremely important to correctly configure 
Super Utility for your disk before using Format without Erase. 
Either use Super Utility's configuration module or use the proper 
DOS specifier with each Format without Erase command. If you use 
DOS specifiers with Format without Erase, you should use a 
track-count override as well. If you don't know how to enter DOS 
specifiers and track-count overrides, the section on 
disk-extending in the MISCELLANEOUS Chapter contains an example 
which should be helpful. 

Format without Erase is item number three on the Format menu. 
When you run it, it will pause at the first problem sector it 
finds (see note 1). If your notes indicate that this is a 
stubborn sector, just use <S> to skip it. If, on the other hand, 
it's a compliant one, enter <C> and let Super Utility retry the 
sector until it is read and reformatted--or, if your notes 
indicate that the current problem sector is the first of several 
compliant problem sectors, with no intervening stubborn ones, 

Copyright (c) 1983 by Breeze/QSD, Inc. 



42 INSIDE SUPER UTILITY PLUS 

enter <N> and let Super Utility zip through them all 
automatically. 

After Format without Erase has gone over the entire disk, it 
will go back to track zero an verify all it has done. Unless your 
disk is physically damaged or worn, this verify should not 
encounter any problems. Finally, Format without Erase will update 
the directory. 

The directory update does two things. For one thing, it can 
increase the number of available tracks in the allocation table. 
This is unlikely, but it can happen as a result of your 
"extending" a disk the hard way. To extend a disk is to increase 
the number of tracks it has, without losing any any of the data 
currently on the disk. E.g, you may extend a 35 track disk into a 
40 track disk. The normal way to extend a disk is to use Super 
Utility's Standard Format routine. This is a quick and highly 
automatic method. I describe it in this book in the Miscellaneous 
Chapter. Another way to extend diskettes is via the Format 
without Erase routine. 

Suppose you want turn a 35 track diskette into a 40 tracker 
using Format without Erase. You'd go to the Format menu and 
select the Format without Erase option for the disk in question. 
When you specified the drive number, you'd use an override 
command to indicate the new number of tracks--e.g, if the target 
disk were on drive zero, you'd answer the 'Drive(s) ?' prompt 
with 

0=40 

When Format without Erase started the 36th track (track number 
35, since the first track is numbered zero),· you'd get an I/O 
error, because that track was as yet unformatted. You'd enter <S> 
to skip the sector, and receive a similar message for the next 
sector. To add five tracks to a single density diskette (at ten 
sectors per track), you'd have to skip 50 sectors. If you were 
extending a 35 track double density diskette (18 sectors per 
track) to 40 tracks, you'd have to enter <S> 18*5 times, for a 
grand total of 90 S>kips. 

This is certainly an unnecessarily laborious way to approach 
the task of extending a disk--especially when you could achieve 
the same end so easily with the alternate technique I describe in 
the MISCELLANEOUS Chapter. But if you were to follow the above 
procedure, the Format without Erase routine would faithfully 
update the directory to the new track-count, as soon as it 
verified the reformatting process. The second thing Format 
without Erase does when it updates the directory is to liberate 
any tracks which which were previously locked out. This means 
that you'll have more free space available. But if a gran had 
been locked out because the disk was flawed, data later saved to 
that gran may be in jeopardy. So if you rescue a questionable 
disk with Format without Erase, back it up a couple of times and 
throw away the original. Or keep the original for a scrap 
disk--but don't entrust important data to a disk which may be 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 43 

physically flawed.After updating the directory, Format without 
Erase will tell you how many sectors it couldn't read on its 
first (reformat) pass, and how many it couldn't read on its 
second (verify) pass. Remember, the data in any sector which 
failed on the first part has been lost, even if it was readable 
on the second pass. 

This is the end of the Format W/0 Erase section. Return to 
the Problem Recipe. 

STUBBORN ERRORS 

There are two kinds of stubborn errors: 1) peccadilloes, and 
2) nightmares (sometimes there's just no getting around technical 
language). I'll consider each in turn. 

1) Peccadilloes 
Peccadilloes are errors which result in the the Super Utility 

error message: 'DATA CRC Error'. Remember, every sector has a 
data subfield, and a two byte CRC is recorded at the end of that 
field each time data is written to the sector. "DATA CRC Error" 
means that there's a discrepancy between the CRC recorded when 
the data was written, and the CRC which the FDC computes when it 
reads the data at a later time. This indicates that something in 
the data subfield has changed since the sector ~as last written 
to. 

There are two ways such a change could happen. One way, which 
I'll call a data peccadillo, occurs when one or more bytes of 
actual user data gets altered. The other way, which I'll call a 
CRC peccadillo, occurs when one or both of the recorded CRC bytes 
to get corrupted, while the user data remains intact. Either type 
of peccadillo results in disagreement between the recorded CRC 
and any freshly computed CRC. 

Both kinds of peccadilloes can be fixed just by reading and 
rewriting the problem sector with Zap's Display Sectors option. 
Ask Zap to display the problem sector. When you get the "DATA CRC 
Error" message, just select the mini-menu's <S> option. Super 
Utility will then display the data as it found it. 

Next, you enter the modify mode by pressing <M>. The last 
step is to. key <ENTER> <U> <ENTER>. (Editor's note: <ENTER> 
<ENTER> would work just as well.) This resaves the sector. When 
the sector is resaved, the FDC automatically recomputes new 
checksum~, which are in accord with the rest of the data, and 
saves them on the disk in place of the old ones. 

If the peccadillo in question was a CRC peccadillo, all this 
is fine. But if the error was a DATA peccadillo, the data in the 
"fixed" sector will still be corrupt, though Super Utility, DOS, 
and other software will now be able to read the sector without 
generating an error condition. 

Unfortunately, both types of peccadillo look the same to the 
FDC. Only the user has a chance of telling which kind took place. 
The best thing to do is to inspect the sector while you're still 
looking at it with Zap. If you're looking at a word processing 

Copyright (c) 1983 by Breeze/QSD, Inc. 



44 INSIDE SUPER UTILITY PLUS 

file, editor/assembler source file, or other ASCII text, it 
should be fairly easy to spot corrupt bytes. On the ASCII side of 
the display, you'll see graphics, or other meaningless 
characters, where there should be legible material. Just enter 
the modify mode (making sure to set data-entry to ASCII), and 
type over the garbage. 

A word of warning is in order. Sometimes a word processor's 
text formatting characters, or other information, may look like 
garbage. If you have Lazy Writer files with underlined sequences, 
those sequences will look like trash to any disk monitor, 
including Super Utility. Editor/assemblers often have line 
numbers or file headers with high bits set. Again, these can look 
like garbage when viewing disk sectors. I haven't yet seen 
Mumford's Instant Assembler, Disk version, but I understand it 
uses a space saving tokenized source format, both in memory and 
on disk. Such files will probably also look trashy when examined 
with Super Utility. So always try to know what you're doing 
before zapping a disk. If possible, look at the corresponding 
sector in a backup file, before making any changes. 

If the file is not a text file, than it's much more difficult 
to decide whether your peccadillo was CRC or data, and if data, 
which data. If you're looking at a BASIC program, in its normal 
compressed format, than you would have to hand detokenize it, and 
sort out all the line numbers, and pointers to line numbers, to 
get an idea of what belongs and what doesn't. This book is not 
the place to describe such procedures. 

If you're looking at machine language object dump, things can 
get even more difficult. You would have to disassemble the code, 
and see if anything looks screwy. In doing so, you would also 
have to sort out DOS's load file format codes. If you don't know 
what load file format codes are, there's some information on them 
in the 'PATCH SECTORS' section of this book. If you have no 
knowledge of machine language, then this book can't help you 
decipher farkled object files. But if you have a backup of the 
file, you can just follow the formula described below. 

Assuming you have a backup, it may be easiest to simply copy 
the backup file onto the problem file. However, sometimes this 
may be undesirable. If you've updated the problem file since the 
last backup was made, copying the entire backup file would wipe 
out the update changes. But copying only the afflicted sector 
would preserve the update work, providing that the target sector 
was not one of those affected by the update. 

I've noticed that every time I mention something in this 
section, I seem to have to point out that there are two kinds of 
that thing. Now I must say that, for the purposes of this 
discussion, there are two ways a file may be backed up. One is by 
backing up the entire disk which contains the file. For some 
perverse reason, a disk which is a backup of an identical disk is 
called a "mirror image" backup, even though it's not a mirror 
image, but a true replication. The other way to backup a file is 
to just copy it over to a different disk, or a differently named 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 45 

file on the same disk. I'll call this type of backup a 
"file-backup." 

In the case of a mirror image backup, the backup sector will 
be in the same relative position on its di~k as the problem 
sector is on its own. But when you work from a file backup, the 
problem sector and its backup sector will probably occupy 
different places on their respective disks (especially if both 
the problem file and its backup are on the same disk). But the 
problem sector will still have the same relative position within 
each file. In other words, the target sector should have the same 
File Relative Sector Number (FRSN) in both the problem file and 
backup. 

When copying a problem file from a mirror image backup, you 
can use Zap's Copy Sectors option. Just specify the same track 
and sector for both the source and destination, varying only the 
drive number if you're using more than one drive. 

If you're working with a file backup, there are two possible 
procedures which are useful for finding the proper backup sector. 
Which is better? That depends on the individual situation and 
your temperament. 

METHOD A 

First, determine the FRSN of the problem sector. To do this, 
go to Super Utility's File Utilities section and run option one, 
Display File Sectors. Enter the name of the problem file. If the 
disk containing the backup file is also on line at the time, be 
sure to include the correct drive number as part of the file 
spec. 

Super Utility will find the file and display various facts 
about it, and then prompt you with 'Choice?'. At that time, it's 
waiting for you to enter the FRSN of the sector you want 
displayed. Take a guess at the proper FRSN or just press <ENTER> 
to default to zero (remember, the number of the first item in a 
relative count is usually zero). Use the arrow keys to step 
through the file until you come to the problem sector. You can 
identify it by its track and sector number, which are displayed 
on the left side of the screen, just as they are in the ordinary 
Zap mode. Note the problem sector's FRSN. This will be displayed 
near the screen's lower left hand corner, to the left of the hex 
digits aE0"--under the heading 'RSEC', for Relative Sector. If 
the problem prevents Zap from loading the sector, you can still 
determine its FRSN by the FRSN's of the adjacent sectors. Next, 
use Display File Sectors to look at the backup file. When Super 
Utility has located the file and asks you to enter your choice of 
sector, enter the FRSN which you have just determined on the 
original. The sector displayed should be the backup of the 
problem sector. Make a note of its track and sector number as 
displayed at the left side of the screen, next to the hex digits 
"70" and "90", respectively. 

You can now use Zap's Copy Sectors option to copy the backup 
sector onto the problem sector. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



46 INSIDE SUPER UTILITY PLUS 

METHOD B 

Use File Utilities' Compare Files to compare the problem file 
with its backup. If all goes well, Super Utility will report data 
differences in only one sector, and that should be the problem 
sector. 

Super Utility will report the differing sector(s) in terms of 
its FRSN. Take note of this number and go to Super Utility's File 
Utilities section. use Display File Sectors to view the problem 
file. When you see the 'Choice ?' prompt, enter the FRSN 
displayed by Compare Files. Super Utility will try to read and 
display the sector. If it succeeds, the track and sector numbers 
will be displayed in the usual Zap format. If it fails, they will 
be displayed in the error message. In either case, note them 
down. Then do the same with the backup file. Finally, copy the 
backup sector onto the problem sector. 

2) Nightmares 
An ancient computer blessing goes, "May your nightmares all 

have backups." This is especially true when a nightmare error 
occurs on a directory track (except for the HIT and GAT sectors. 
If that should happen, only~ mirror image backup of the disk can 
restore things--unless you want to try to hand reconstruct the 
blown directory sector. 

There is a major decision you must make in dealing with 
nightmares--you must choose and follow one of two divergent 
paths. 1) Format without Erase, and 2) Track read reconstruct. 

If you have a backup, the decision is easy. Format without 
Erase, and then recopy the lost sector(s). But remember, Format 
without Erase does destroy the data in nightmare sectors--only 
compliant errors are cured. 

If you don't have a backup, you may still opt for path 1. 
You'll lose some data, but at least you'll be able to reuse the 
disk (though I would consider a nightmare prone disk a poor 
choice for most projects). If the nightmare occurred in a 
directory sector (other than the GAT or HIT), you'll loose a 
great deal more than a single sector's worth of data. Any file 
whose primary directory entry was in the damaged sector will 
become inaccessible. Files whose extended directory entries were 
contained in that sector will probably become useless as well. 

Since a directory sector can hold up to eight entries, you 
may loose eight files in one fell swoop. If one or two of those 
files are crucial system files, the entire disk may become 
inaccessible to you--especially if you have a one-drive system. 

If you're willing to sacrifice the other files cataloged in 
that directory sector, the problem of the lost system files is 
one of the easiest to cope with. Most DOS's have their system 
files in the same place on every disk. The placement of the 
system files' directory entries is also fairly constant. So you 
can Format without Erase the nightmare disk. Then copy the 
corresponding directory sector from another disk onto the 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

nightmare sector. Just make sure 
same DOS as the nightmare disk, is _that the source disk has tr 

1n the same density, and has 

!21S!1 5F00 0!210fZI 0053 5953 322!21 2020 2053 5953 •••• SYS2 S' 
r.Te:x, -

10 EB29 210E 0500 1020 FFFF FFFF FFFF FFFF 1> ! ••.. I 
DRV 20 0000 0000 0000 000!ll 0000 000fll 0f2L00 0000 . . . . . . . . . . . . . . 

1 3'11 0000 0000 000121 IZl000 !ll0f210 0000 0000 00012, . . . . . . . - . . . . . . 
TRI< 40 0000 001210 0000 121000 0f2100 0000 0000 001ll0 . . . . . . . . -. . . . . 

17 50 0000 001210 0000 0!2100 0000 0000 001Zl0 0000 -. . . . . . . . . . . . . 
TRU 60 1ES0 0000 0e142 4153 4943 2020 2043 4D44 • P ••• BASIC C 

17 70 782F 9642 141Zlf21 1903 FFFF FFFF FFFF FFFF >:1,--s •••• _ 
SEC 80 0000 0000 0000 00fZl{21 !c!1000 0000 00S210 0000 .....•......... 

06 90 0000 0000 0000 0000 00fZIIZI 0000 0000 0000 • • • • - • • • • • • • • • 

STD A0 0000 0071 0053 4E44 3320 2020 2042 4153 ••• q.SND3 E 
ISO B0 9642 9642 060fil 1501 FFFF FFFF FFFF FFFF ,-a,-a ... --

C0 0000 0000 000121 (21000 0000 0000 0000 0000 . . . . . . . . . . . . . . 
D0 0000 0000 0000 0000 0000 0000 12s000 0000 . . . . . . . . . . . . . . 
E0 0000 001210 0053 4352 4950 5349 544C 4320 ••••• SCRIPSITL 

+00 F0 9642 9642 2A00 1603 1E24 FFFF FFFF FFFF 1"B1"B* • • • • $-
FIGURE 5 

Copyright {c) 1983 by Breeze/QSD, Inc. 



48 INSIDE SUPER UTILITY PLUS 

E30!ZI FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF -
HEXE310 FFFF CE0fl 000€1 0199 78FF FFFF FFFF FFFF 
MEME320 FFFF FFFF FF00 0000 0000 00FB E5E5 E5E5 .. -... 

E330 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 11111 -::.<:-: E340 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 I 1•i1•iii(ai I 
E350 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 ·; ............ •·• 

•. 1········~•-i.•.a.•.•·~ E36!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 .E5E5 E5E5 I I I I I I I I I I I I I 
E37!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 iii 1Y1•1•i,·,·,•,i·ti· 
E38!21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5. E5E5 E5E5 ~<•·····.-.·i(id .. E39!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 rn ,iiiw•· I E3Af21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 .i... .i . I I I I I I I 
E3Bf21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 i1•1•::::::1•1•1i:::1•11• I 
E3C!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 i1Y 1•1·i1 •1·1•1i 
E3D!21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 ,·,·····················•·ti·, 
E3Ef21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 ,•,·•· •1•1•1•«11ti•1·1•. 

+00E3F0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 ,·,··},·,,·,··••·•·mi'-
• •'- • •••• '- ••• II ••• 

E40!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 I :-: I 11:::: II I II II I 
HEXE4HI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 (1 i·,· ·,·1·1·1iii·,· 
MEME420 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 ··•i:-: ...... •.I A40C FFFF I I I I I I I I•• ••••· 

E43!Zl FFFF FFFF FFFF FFFF FFFF !210!210 0000 001210 
E44QI FE00 00!215 0166 BDFF FFFF FFFF FFFF FFFF 
E45!21 FFFF FF!Zl0 0000 !21000 0!ZIFB E5E5 E5E5 E5E5 
E460 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E4 7!21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E480 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E49!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E4A!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E480 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E4Ckl E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E4D!ZI E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E4E0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 

+!::lk1E4F0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 

E500 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
HEXE510 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
MEME520 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 

E530 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E540 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E550 E5E5 E5E5 E5E5 E5E5 E5E5 A40C FFFF FFFF 
E560 FFFF FFFF FFFF FFFF 0000 0000 121000 FEi!l!ZI 
E570 0001 01AA 49FF FFFF FFFF FFFF FFFF FFFF 
E580 FF00 0000 00f;0 !210FB E5E5 E5E5 E5E5 E5E5 
E590 E5E5 E5E5 E5E5 E5E5 E5E5 E5ES E5E5 E5E5 
E5A0 E5E5 E5E5 ESE5 E5E5 E5E5 E5E5 E5E5 E5E5 
E5B0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E5C0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 
E5DV-1 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5. 
E5E0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 

+00E5Fl21 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 

FIGURE 6 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 49 

the directory on the same track. 
Finally, you might want to use Zap's modify mode to zero out 

those sections of the directory that don't apply to the system 
files. Non-system directory entries are probably invalid for the 
disk you copied them to. If you prefer to experiment, you may 
leave the entries in the directory and try to access the files 
they describe. If the files don't work, then kill the the files, 
or go back and zero their directory entries. 

In case you're not at all familiar with directory structure, 
Figure 5 depicts a typical directory sector. It contains eight 
entries, each of which takes up two lines of the display. If you 
look at the ASCII side of the display, you can make out the file 
names embedded in the first line of each entry. 

The file name extensions are all the way to the right. Those 
files whose extensions are SYS are system files (Multidos uses 
"DOS" instead of "SYS"). So if a line ends with SYS (or DOS), 
leave it and the following line alone when you zero out the 
non-system entries. 

Note: A TRSDOS III directory does not code the system files in 
the "normal" manner, so you will not see any entries for system 
files in the directory of a TRSDOS III disk. If you must attempt 
to recover or reconstruct a farkled TRSDOS III system file, 
consult your Super Utility Manual for the proper procedures. 

Finally, run Disk Repair and use the Repair GAT and Repair HIT 
options. The system files should now be accessible to the system, 
and the disk should boot (providing it was a booting disk to 
begin with) and behave norrnally--except that you've lost access 
to some of your files. 

If a nightmare occurs on a HIT or GAT sector, use Format 
without Erase to make the sector usable. Then run Repair HIT or 
Repair GAT as required. 

RECONSTRUCTING A TRACK 

If you just can't give up on salvaging your nightmare ridden 
sectors, no matter how rocky the road nor how unlikely your 
prospect of success, try this method. 

DON'T Format without Erase--yet! Go into Super Utility's 
Memory Utilities section. Notice that item 15 is labeled Track to 
Memory. This function may be able to help salvage at least part 
of your lost data. The reason for this is that it performs a 
track read. There are two different ways the FDC chip can be told 
to read or write inforrnation--sector or track. Normally the 
sector method is used, except during formatting. Track reads 
aren't as reliable as sector reads, because they dispense with 
some of the safeguards I described in the technical introduction. 
A track read does have one advantage in dealing with farkled 
disks, however--namely, the FDC does not go into a tizzy if a 
sector ID is mangled or missing, or if a CRC does not compute. In 
fact, it doesn't treat ID's or CRC's as anything out of the 

Copyright (c) 1983 by Breeze/QSD, Inc. 



50 INSIDE SUPER UTILITY PLUS 

ordinary. It reads in everything on the track as data--including 
gaps, formatting marks, file load format codes, and all. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 51 

E300 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
rfEXE310 FFFF CE00 0000 01F1 D3FF FFFF FFFF FFFF 
MEME320 FFFF FFFF FFFF FFFF FFFF CB00 FE11 F331 

E330 FC41 21E2 42CD 9A42 3E01 32E1 373A 0242 
E340 571E 0401 004D CDAA 4220 703A 004D E610 
E350 21E5 4228 69D9 2A16 4D55 7C07 0707 E607 
E360 6707 0784 5F01 FF4D D9CD 7542 3D20 17CD 
E370 7542 47CD 7542 6F05 CD75 . 4267 0528 EACD 
E380 7542 7723 18F6 3D28 0BCD 7542 47CD 7542 
E390 10FB 1805 CD75 42CD 7542 6FCD 7542 67E9 
E3A0 D90C 2014 C53E 0132 E137 CDAA 4220 0CC1 
E380 1C7B D60A 2002 5F14 0AD9 C921 F142 CD9A 
E3C0 42CD 4000 76E5 7EFE 0328 08CD 3300 23FE 
E3D0 0020 F3E1 C9C5 CDB2 42E1 C844 4DED 53EE 
E3E0 3721 EC37 361B F5F1 F5F1 7E0F 38FC 3688 

+00E3F0 D511 EF37 C5C1 1808 0F30 0A7E CB4F 28F8 

E400 1A02 0318 F67E E65C D1C8 3600 C91C 1F03 . . . . C .. \. .,,6 -... • • 

rfe:XE410 17E8 4E4F 2053 5953 5445 4D0D 17E8 4449 . fo sv's,-EM~ . I 
HEHE420 534B 2045 5252 4F52 0DEB 5F30 E5FF FFFF S, ERROR. 01 

E430 FFFF FFFF FFFF FFFF FFFF FFFF FFFE CE00 
E440 0005 010E 26FF FFFF FFFF FFFF FFFF FFFF 
E450 E000 0000 0000 lFFB 0506 5359 5330 2020 . . 
E460 1FA9 0D2A 202A 202A 204E 204F 2054 2049 .. * N 0 
E470 2043 2045 202A 202A 202A 0D2A 2050 524F ·er: * * *. * PRO 
E480 5052 4945 5441 5259 2050 524F 4752 414D PRIETARY PROGRAM 
E490 202A 0D2A 2043 4F50 5952 4947 4854 2028 *·* COPYRIGHT ( 

E4A0 6329 2031 3937 3920 202A 002A 2042 5920 c> 1979 *. * BY 
E4B0 5441 4E44 5920 434F 5250 4F52 4154 494F TANDY CORPORATIO 
E4C121 4E2A 12102A 212120 4_64F 5254 212157 4F52 5448 N*·* FORT WORTH 
E4D0 2C20 5445 5841 5320 202A 0D2A 2041 4C4C , TEXAS * · * ALL 
E4E0 2052 4947 4854 5320 5245 5345 5256 4544 RIGHTS RESERVED 

+00E4F0 202A 0D2A 202A 202A 204E 204F 2054 2049 *·* * * N 0 T I 

E500 2043 2045 202A 202A 202A 0D01 144B 4000 C E * * * ... I<@. 
HEXE510 0037 4537 4537 4537 4537 4537 4537 4537 .7E7E7E7E7E7E7E7 
MEME520 4501 9000 45A3 45A3 45A3 45A3 45A3 45A3 E. • E -E:-E: 1111£ 11111£ 11111£ • 

E53121 45A3 45A3 45A3 45A3 45A3 45A3 45E5 F53A E~1111£-'E:-'E:-'E-'E:1j/ 
E540 E037 214B 4077 2CA6 2808 2C1F 380F 2CB7 j • • I • • • ! K.i>w ~ ~ , • B • ~ 
E550 20FB 3A40 38E6 0420 AD95 FFFF FFFF FFFF : @a.•. 

• E560 FFFF FFFF FC00 0000 0000 03FE 0000 0101 
E570 C2E2 FFFF FFFF FFFF FFFF FFFF FFFF FFFF 
E580 FFFF FFF9 CB01 001210 4E58 5A51 6060 6B62 -m ( b 

E590 696C 676E 6568 636A 61:74 7F76 7D70 7B72 1 gnehcjav}pCr-
E5A0 797C 777E 7578 737A 7144 4F46 4D4121 4142 y:w~uxszqDOFM@AB 
E5B0 434C 234E 4F27 494A 3F54 553F 5750 3252 CL#NO~IJ?TU?WP2R 
E5C0 5339 5D5E 5E58 595A 5B24 2F26 2DDD 2B22 59y·--'-XYZ[$/&-~+" 
E5D0 292C 2D5A 4741 5A2A 4444 5044 5644 585C >,-ZGAZ*DDPDV X\ 
E5E0 543C 4E47 4C4C 5C57 3873 6475 070121 0802 T<NGLL \W; sdu .•.. 

+00E5F0 090C 6968 7C61 6E64 6E70 1574 6E10 707C . . ik:andnp.tn . p: 

FIGURE 7 

Copyright (c) 1983 by Breeze/QSD, Inc. 



52 

00 
~x 10 
ORV 20 

1 30 
TRI< 40 

17 50 
TRU 60 

17 70 
SEC 80 

00 90 
STD A0 
ISD Bff 

C0 
D0 
E0 

+00 F0 

FFFF FFFF FFFC FCFC 
FFFF FFFF FFFC FCFC 
FCFC FCFF FFFF FFFF 
FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF 
FCFC FCFC FCFC FCFC 
FCFC FCFC FCFC FCFC 
FCFC FCFF FFFF FFFF 
FFFF FFFF FFFF FFFF 
FFFF FFFF FFFF FFFF 
FFFF FF="FF FFFF FFFF 
FFFF FFFF FFFF FFFF 
5452 5344 4F53 2020 
0D44 4952 203A 310D 
4D44 2F43 4D44 0DFF 

INSIDE SUPER UTILITY PLUS 

FCFC FCFC 
FCFF FFFC 
FFFF FFFF 
FFFF FFFF 
FFFF FFFF 
FFFF FFFF 
FCFC FCFC 
FCFC FCFC 
FFFF FFFF 
FFFF FFFF 
FFFF FFFF 
FFFF FFFF 
FFFF FF21 
3035 2F31 
4340 4420 
FFFF FFFF 

FIGURE 8 

FCFC 
FCFC 
FFFF 
FFFF 
FFFF 
FFFF 
FCFC 
FCFC 
FFFF 
FFFF 
FFFF 
FFFF 
0'1100 
312F 
544F 
FFFF 

FCFC 
FCFC 
FFFF 
FFFF 
FFFF 
FFFF 
FCFC 
FCFC 
FFFF 
FFFF 
FFFF 
FFFF 
E042 
3832 
2043 
4720 

~ • l j o , • If• i "0" .,., MJt• 

.DIR :1.CMD TO 
MD/CMD. I MR 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 53 

As you may recall, the FDC won't complete a sector read if it 
encounters an ID error, or header CRC error. So by performing a 
track read you may get data into your computer that the FDC 
wouldn't look at during a sector read. 

Assuming that your track read succeeds completely-~and that's 
a pretty big assumption--you might think that you only have to do 
a track write to get the information back on the disk in usable 
form. Uh-uh! Here's where one of those little FDC kinks steps in 
to make a difficult situation even more difficult. 

Believe it or not, if you do a track read of track A into a 
memory buffer, and track write that buffer onto track B, track A 
and track B usually don't end up containing the same data. That's 
because a track read reads it all in like it is, but there are 
certain bytes which a track write changes. For instance, trying 
to write an F7 hex during a track write, will not put an F7 on 
the disk. Instead, it will write two CRC bytes, which might have 
any value. Trying to include any byte from F8 to FF hex in a 
track write, will result in the specified byte being written, but 
with an altered clock frequency. When the FDC later tries to read 
it during normal sector I/0, it will look like an address mark 
instead of a data byte. 

I'll give you the general strategy for track read reconstruct, 
and then take a closer look at some of the details. First, of 
course, you do a track read of the nightmare track into a memory 
buffer. Then you separate the wheat from the chaff. That is to 
say, you look at all the stuff read into the buffer and try to 
figure out what represents genuine user data, and what represents 
genuine garbage. Then you get all the good stuff down on paper. 
Finally, you reformat the nightmare track and use Zap's Modify 
Memory mode to reenter and save the data, sector by sector. 

Now for the gruesome details: When you do the track read, 
make sure the drive is configured,correctly for the disk. It is 
especially important to do the track read in the proper density. 
When you ask Super Utility to do the actual read, it will request 
the drive and track number. After you provide that information, 
it will ask for the start of the buffer into which the track will 
be read. It's usually a good idea to default by pressing <ENTER>. 
Super Utility will select a safe buffer. · 

Finally, you will get the prompt, 'Sync to ID marks?'. Super 
Utility asks this because there are two ways the FDC may be 
instructed to track read--with ID sync or without. If you elect 
to sync, the FDC will try to sync with ID fields whenever it 
encounters them. If you elect not to sync, the FDC will just read 
everything it can, from the first byte on the track, making no 
attempt to resynchronize when it encounters an ID field. 

One would expect that track read with sync would invariably. 
produce more reliable results than track read without. Actually, 
the reverse seems to be the case. You should try several track 
reads of each kind on your nightmare track. Each time, inspect 
the result carefully. You'll find that often even two track reads 
of the same kind do not produce identical results. Choose the 
with or without sync option that seems to work best for your 

Copyright (c) 1983 by Breeze/QSD, Inc. 



54 INSIDE SUPER UTILITY PLUS 

problem. When you have finally decided that the material you've 
track read into the buffer is as good as it's going to get, it's 
time to start in on the wheat and chaff thing. Figure 6 shows the 
result of track reading a formatted Model I TRSDOS track--a 
"virgin" track which contains no data other than formatting 
information and "fill" bytes. Figure 7 shows a similar track 
after files have been saved on it. Looking at the first figure, 
you will notice the track is buffered in memory starting at 
location D400 hex. It is laid out in the manner described 
earlier~ First there a rather long gap. The track read may pick 
up some garbage at the beginning of the track as well, but in 
this case, the read was clean. Skip through the bytes until you 
come to the first FE hex in the buffer (in the example, it's 
displayed at memory location D415 hex). That marks the beginning 
of the first physical sector on the disk. 

Following the FE is the byte sequence 06 00 00 01. The first 
three bytes indicate that the track number is six, the head 
number is zero, and the sector number is zero. The one at the end 
of the sequence is the length code. In IBM standard (which TRS-80 
DOS's use), one means a 256 byte sector. The next two bytes 
(D6,4A) are the CRC for the header-subfield. 

Next we have another gap consisting, in this case, of 12 FF's 
and six zeros, for a grand total of 18 bytes. Then comes the Data 
Address Mark, FB. 

After the DAM comes the data. The track has not had any files 
saved to it yet, so the data field contains what ever "fill 
bytes" DOS used for formatting. As you see, in this case the fill 
byte is E5, and there are exactly 256 of them. 

ES hex is the "worst case" data pattern for single density 
disk I/0. That means that if a physical disk sector is in 
marginal condition, a series of ES's is the data pattern most 
likely to cause an error. The worst case pattern for double 
density is the byte pair 6D 86. 

Most DOS's fill data areas with worst case patterns when they 
format. This is so you'll become aware of error prone disks 
before you entrust vital data to them. 

After the ES's comes the byte pair, A4 0C. This is the data 
CRC. Finally, we have another 18 byte gap, another FE sector ID, 
and all the shenanigans start again with sector five. And so it 
goes. 

If you examine the second figure, you'll notice it's pretty 
much the same as the first, except for the sector data, and the 
data CRC's. That should give you an idea of what a track-read 
track should look like when nothing has been munched. Now suppose 
you track read a nightmare track. When you examine the buffer, 
you should see a pattern like the one in figure 7--up until the 
point where the disk got clobbered. If you're lucky, there'll 
only be a few bytes of garbage, and then normality will resume. 
Unfortunately, here's what is much more likely to happen: after 
the FDC passes over the garbage, it will be out of sync with the 
remaining data on the track. That is to say, when it tries to 
read the garbage, it will lose some bits, or pick up extra ones. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 55 

Thereafter, even if the FDC reads all the subsequent bits 
faithfully, they will be not grouped into bytes correctly. In 
effect, the data will become shifted. Since shifted data looks 
about as much like garbage as genuine garbage, this can make it 
difficult to figure out what's going on in the track. Here's 
where Super Utility's decryption features come to the rescue. 
That's right, all that encrypting-decrypting stuff isn't just for 
people who want to play with secret messages. It can help you 
save your disks! 

What you have to do is retry the track read operation several 
times, with and without sync. When you're satisfied that you've 
got the best results that you're going to get, examine various 
parts of the garbagy looking stuff, and use the decryption 
facility to shift through all eight possible phases. The way to 
do this is well covered in your manual. Brie~ly, what you do is 
go into Display Memory and look at a trashy ?art of the track 
read buffer. Make sure you're in the paging mode (not the modify 
mode), and press<@>. This makes the DCR (for DECRYPTION) prompt 
appear near the bottom left hand corner of the screen. Then enter 
<:>. This will cause all decryption changes to be visible on both 
the hex and ascii portions of the display. 

Press<@> again to get the DCR prompt back. Then enter SLl 
(for Shift Left 1 bit) or SRl. If the display that results looks 
like what you're hoping for, congratulations--you've probably 
struck pay dirt! Do a screen print, or, if you don't have a 
printer, copy the data by hand. If a shift of one doesn't do the 
trick, try again with shifts of two, three, ••• , through seven 
(Note: for a fuller treatment of the decryption mode, see the 
Undocumented Features Chapter). 

· Even if you do manage to capture meaningful data, you'll have 
to know what it looks like in order to recognize it. Of course, 
there's always the chance that you can spot true data by the 
pattern of gap, header ID, gap, DAM, 258 bytes of what ever (the 
256 byte data field plus two bytes of CRC), gap, etc. That's why 
I detailed the pattern. But things are a lot easier when you know 
what the data looks like. 

If the track contained ASCII word processing material or the 
like, half the battle's already won. If it contained a machine 
language program, it would help if you knew some of the code. If 
such is the case, you may find what seems to be a sequence of the 
program that you're looking for, except that extraneous bytes are 
thrown in. These could be load file format codes. For more 
information on load file format codes, see the section of this 
book which deals with patch sectors. Also, your favorite DOS 
manual may shed some light on the subject. My own introduction to 
the topic was via the technical section of my LDOS manual. 

If nothing you do makes your lost data appear in recognizable 
form, you're just out of luck. However, if you do manage to tune 
the data in, your work's just begun. Print it all out in 
sequence. Isolate the sector (or sectors) which were farkled by 
the nightmare. It will be missing the header subfield (or part of 
it,) or the DAM, or else the header-subfield CRC will be wrong. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



56 INSIDE SUPER UTILITY PLUS 

00 A2C4 2E2F 2C2D 2A2B 0000 0000 0000 0000 .... /,.-*+ •.•.••.. 
~x 10 0000 0000 0000 0000 0000 0000 0000 

• . 
0000 . . . . . . -- . - . . . . . . 

ORV 20 2800 0000 0000 0000 0000 0000 0000 0000 ( ............... 
1 30 0000 0000 0000 0000 0000 0000 0000 0il00 • • • • • • • • • • • • - • • • 

TRK 40 F2C5 0000 0000 0000 0000 0000 0000 0000 'I ............... 
17 50 0000 0000 0000 0000 0000 0000 0000 0000 -. . . . . . . . . . . . . -. . 

TRU 60 0000 0000 F000 0000 0000 0000 fl000 0000 .... . . . . - . . . . . . 
0000 0000 ,0000 0000 -17 70 0000 0000 0000 0000 . . . . . . . . . . . . . . . . 

SEC 80 0000 0000 0000-0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . . 
01 90 0000 0000 0000 0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . . 

STD A0 0000 0000 0000 0000 0000 001210 0000 0000 . -. . . . . . - . . . . . . -
ISD B0 0000 0000 0000 0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . . 

C0 0000 0000 0000 0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . . 
00 0000 0000 000121 0000 0000 0000 0000 00fll0 . . . . . . . . . . . . . . . . 
E0 0000 0000 0000 0000 0000 0000 0000 0000 . . . . . . . . . . . . . . . . 

+00 F0 0000 0000 0000 0000 0000 0000 00§!10 0000 . . . . . . . . . . . . . . . . 

FIGURE 9 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 57 

If an ID or DAM is missing, study the printout and figure out 
where it belongs. Part of the data will probably be gone too. 
Mark the printout to indicate what's missing from where. If you 
reconstruct the sector correctly on paper, you'll get it right on 
the disk too. Now you're ready to start setting up the disk. 
Since it's always safer to work with backups, backing up the 
farkled disk should be the first thing you do. Use Super Utility 
to make the backup, and just S>kip the problem sector(s) when 
Super Utility prompts you with the mini-menu. Then go into Zap 
and display the nightmare sector on the backup. Use the modify 
mode to type in the sector data. If more than one section was 
nightrnared, repeat as necessary--and good luck!!! 

DIRECTORY REPAIRS 

After all else has been done, it's time to check, and if 
necessary repair, the directory. Simply go to Super Utility's 
Disk Repair module (item five on the main menu) and select option 
nine, "Check Directory." If Super Utility reports zero errors, 
that's it. If Super Utility reports a HIT or GAT error, run 
Repair HIT Sector or Repair GAT Sector. 

In Repair GAT Sector, you will be asked whether you want to 
fix just the allocation table, or the entire sector. Usually, 
just fixing the allocation table will be sufficient. Fixing the 
entire sector also replaces the disk name, date, master password, 
and auto commands with Super Utility's defaults. You'd want to do 
that is if those fields contained garbage. You'd know that was 
the case if Super Utility displayed trash whenever it claimed to 
be reporting a disk's name and date. 

If Check Directory, or any other operation, results in a 
message to the effect that the directory can't be located, you 
probably have to run Read Protect Directory. Since, when you have 
this problem, Super Utility can't locate the directory on it's 
own, it can't read protect it without your help. It will ask you 
for the track and sector the directory starts on, and its length 
in sectors. 35-40 track diskettes normally have the directory on 
track 17 decimal. 80 track disks usually have the directory on 
track 40, to keep it in the center of the action. NEWDOS-80 and 
Doubledos may have it elsewhere. Directories are usually one 
track long--that's ten sectors for single density, and 18 for 
double. Again, don't take anything for granted with NEWDOS-80. 

If you're not sure about the directory's location and length, 
go Zapping through th~ disk until you find it. You've already 
seen what a typical directory sector looks like. That was a 
file-location sector. The first sector in a directory is the GAT. 
It contains the disk name, date, master password, and auto 
command in its last several bytes. That should help you recognize 
it. Figure 8 is a sample GAT. The second directory sector is the 
HIT. HIT's look pretty garbagy. Figure 9 is a typical HIT sector. 

After you have located and read protected the directory, rerun 
the Check Directory program, and run any repair programs 
indicated. There is one case when Check Directory will be unable 

Copyright (c) 1983 by Breeze/QSD, Inc. 



58 INSIDE SUPER UTILITY PLUS 

to find the directory even though the disk is a perfectly good 
one, and that is when you try to read a Model I TRSDOS disk 
(single-density) on a Model III. The problem is that the DAM used 
by Model I TRSDOS for the directory track is not one that the 
Model III can read! By using "Read Protect Directory", you can 
make the Model III read your Model I disk directory, but the 
process opens up a new can of worms: now Model I TRSDOS will not 
be able to find the directory! 

In order for Model I TRSDOS to be able to use this disk again, 
you must boot Super Utility on a Model I, put in the disk which 
you read-protected on your Model III, and repeat the process. 
This time the directory will be re-written to the disk with the 
correct DAMs. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

Chapter VI 
MISCELLANEOUS 

59 

When you boot in Super Utility, the first thing that happens 
is that the "title page" is displayed on the screen. Then, before 
the bulk of the program is loaded, a quick memory test is 
performed on your system. If a memory fault is detected, a 
message to that effect is displayed and the program load is 
aborted. 

You may think it's a little snobbish of Super Utility to 
refuse to inhabit a computer that flunked its memory test--but 
the Surgeon General has determined that running Super Utility in 
a flaky system is hazardous to your disks. The memory test lasts 
only a few seconds, but on some Model I's, this may be long 
enough for the disk drive to time out. So don't be alarmed if 
your drive does a little extra clicking when you load Super 
Utility. It's all for a good cause. When the memory test has been 
passed, the rest of Super Utility is loaded. During this process, 
a sort of arrow moves across the screen from left to right, top 
to bottom. On the Model I, it looks a little like a rocket ship 
leaving behind a vapor trail of dashes. On the Model III, it's a 
pointing finger. Each dash represents a sector that has been 
loaded in. At the end of the arrow's trip, it hits a graphics 
block. When the arrow hits the block, the load has been 
completed. 

By watching the arrow's progress toward the block, you can 
tell how much of Super Utility has been loaded at any given 
moment, and how much remains to be loaded. If the arrow tends to 
slow or get stuck at any point, you know that your system has 
trouble reading that part of the disk. In that case, it may be 
time for some preventive maintenence--such as head cleaning, 
speed adjustment, and possibly even head alignment. Maybe, just 
maybe, you need a replacement Super Utility disk. 

After Super Utility has been loaded, it performs one last 
disk access before quieting down. During that access, it loads 
the hard configuration and patch sectors. 

Many computers utilize something called interrupts. TRS-80 
disk systems are among those that do. This means that 40 times 
every second (30 on the Mod III - Ed.), the TRS-80 abandons what 
it's doing and executes special subroutines. These are called 
service routines. They help the system keep on top of situations 
which require frequent attention. For instance, the memory 
locations which keep track of time in a regular disk operating 
system (not Super Utility) are updated during service routines. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



60 INSIDE SUPER UTILITY PLUS 

There are certain timing-sensitive operations, such as tape 
I/O, which would be thrown off by interrupt-interruptions. 
Certain stages of disk I/O also require freedom from interrupts. 
Interestingly enough, other stages of disk I/O can't take place 
without them. To accommodate such requirements, the Z-80 
microprocessor has been given the ability to ignore (disable) 
interrupts or respond to (enable) interrupts, according to 
directives in its programming. During normal operations, 
interrupts are enabled a very high proportion of the time--what 
amounts to nearly constantly. 

You have probably noticed that at nearly all times, there is 
a moving graphics block near the upper-right hand corner of Super 
Utility's display. This is called an alive character. The 
movement of this block is attended to during interrupt 
processing. Therefore, when the block is moving, it shows that 
the service routine is working, or alive. That's why it's called 
an alive character. 

The alive character probably won't be of much practical use 
to you. Some DOS's (LDOS and VTOS) offer it as an option. If a 
program bombs and the system hangs, knowledge of whether the 
service routines are still running may help you diagnose the 
cause of the flake-out. An alive character gives you that 
information. However, it's very unlikely that you'll find 
yourself debugging Super Utility. 

There is one way in which the alive character may be useful 
to you, though. It has to do with the fact that there are two 
ways of getting Super Utility to abort an operation. usually 
<BREAK> will terminate any activity. However, there are a few 
instances in which only <CLEAR> will do the job. 

Generally, <BREAK> works when interrupts are occuring 
(remember, that's nearly always), and <CLEAR> may be used when 
interrupts are disabled. So the motion (or lack of motion) of the 
alive character will let you know which of those two keys is 
appropriate. 

An exception to this principle is that <CLEAR> is always used 
to abort a screen print and empty the print buffer. Also, you can 
try using <CLEAR> to terminate an activity when you don't want to 
be returned to the menu. 

The cryptography mode may be entered from either Zap's 
sector-display mode, File Utilities' Display File Sector mode, or 
Memory Utilities' memory-display mode. Both the memory and sector 
display modes present a screenful of information--the former 
about a disk sector and the latter about a 256 byte memory block. 

The screenful contains hex information on the left, and its 
ASCII equivalent on the right. Remember that these display modes 
each have two sub-modes--the paging mode and the modify mode. In 
the paging mode, there is a single cursor at the top left hand 
corner of the screen, in the "margin." You get into the modify 
mode by pressing <M> when in the paging mode. You'll know you're 
in the modify mode when you see the two cursors, one in hex area 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 61 

and one in the ASCII area, of the main display. To enter 
cryptography, you must be in the "paging", not the Modify mode. 

To enter cryptography, press <@>. A 'DCR' {for DeCRypting) 
prompt will appear on the screen. Super Utility is now ready to 
manipulate the display for you. It does so by performing any of a 
number of logical or arithmetic operations on the display 
material. For example, you may ask Super Utility to add "l" to 
every byte in the display. The display will be updated 
accordingly. There is an important distinction to grasp here. 
Only the display is being altered. The actual memory or disk 
sector being displayed is not. You may perform a number of 
cryptological manipulations and then cancel the cryptological 
display. You will see that the target Memory-block or sector 
still contains the original data. There is one exception to this. 
That is what the new feature is all about. We shall get to it 
shortly. 

Let's go through a sample cryptography session. Get into 
Memory Utilities' memory display routine. Use F000 hex as the 
target area. F000 is well above Super Utility's code and buffers, 
and any changes we make there should have no effect on the 
program's operation. 

The first thing to do is to fill the memory block with 
contents which will make the effects of any shifts or rotations 
readily apparent. If the default data entry mode (as revealed in 
the upper left of the display) isn't already hex, make it hex by 
pressing <H>. Then pr~ss <M> to enter the modify mode. The cursor 
should be over the first byte of the sector. Type "55." The first 
byte in the displayed block should now be 55 hex, and the ~ursor 
will have advanced to the second byte. Use the left arrow to move 
the cursor back over the first byte. Press <P> for Propagate. 
Then type "FF." "FF" is hex for 256. All 256 bytes in the memory 
block should now be 55. Press <ENTER> to leave the modify mode 
and return to the paging mode. Note that so far we have used only 
standard memory-modify procedures, not cryptography features. 

Press<@> to get the 'DCR' prompt. The first thing to do is 
to tell Super Utility whether you want the results of your 
cryptography experiments to appear in the ASCII portion of the 
display only, or in the hex side as well. If you were looking for 
a hidden message, such as a copyright notice, you would only be 
interested in the ASCII. If you were looking for disguised 
machine code, you'd want to see the results of your alterations 
in hex as well. For the purpose of this demonstration, we'll 
select the latter mode. To do so, enter colon<:>. 

Notice that each time you enter a cryptography command, the 
'DCR' prompt vanishes and Super Utility is ready to receive 
normal paging commands--but the display is still in whatever 
cryptography mode was last selected. For instance, press<@> to 
get 'DCR' back. Now tell Super Utility to shift the display two 
bits to the right by entering "SR2" {for Shift Right 2). 

As you see, the display changed in accord with your command, 
though the 'DCR' prompt vanished and Super Utility is ready to 
accept normal paging commands. From now on, all memory and 

Copyright (c) 1983 by Breeze/QSD, Inc. 



62 INSIDE SUPER UTILITY PLUS 

sector-displays will be shifted two to the right, until you 
cancel this condition. As a reminder, the letters SR2 will remain 
near the bottom left hand portion of the screen. 

You may _override the shifted display by entering different 
cryptography command. or you may cancel all cryptography and make 
the screen revert to normal by keying <@> and pressing <ENTER> 
without pressing any other keys. 

You may use parallel syntax to shift or rotate right or left 
anywhere from zero to seven bits. To AND every display byte with 
a value, get the 'DCR' prompt and then enter <A> (for "AND") 
followed by the value. For example, you could enter "Al" to AND 
the display with one. Use the same syntax for OR and Exclusive OR 
using "O" or "X" instead of "A." To add or subtract a one byte 
value from every byte on the display, use a"+" or"-" followed 
by the value to be added or s4btracted. For instance, "+5" would 
add five to every byte in the display. 

There is also an automatic, or movie, mode. This only works 
for all OCR modes. Answer 'DCR' with an up-arrow for automatic 
increment or a down-arrow for automatic decrement. You may follow 
the arrow with a number between 0 and 255. This determines a 
timing factor which controls the display change rate. Try it~ 
it's fun! 

You can use cryptography for encrypting as well as 
decrypting. For instance, suppose you want to create a sector on 
your disk containing your name, address~ a copyright statement, 
and perhaps some other information--all hidden. First fi~d an 
unused sector-~you can use File Utilities' Disk Allocations 
options to do so. Then use Zap's Display Sectors to display it. 

Go into the modify mode and zero the display. An easy way to 
do that is to use the <P> command to propagate a series of zeros 
through the sector. Then type <SHIFT><ENTER> followed by <A> to 
change the input mode to ASCII. Type your message into the sector 
display. When you are done, press <ENTER>. Answer the next prompt 
by entering <U>. This will save what you've accomplished so far 
to disk (in non-encrypted form) and return you to the paging 
mode. 

Now you may start encrypting. Suppose you decide to hide the 
message by adding 5 to every byte. Press<@>. Then answer the 
'DCR' prompt by entering "+5." If only the ASCII side of the 
screen changed, select the full screen update by getting the 
'DCR' prompt and entering<:>. 

All that remains now is to save the sector to disk in this 
disguised format. But remember, the cryptography features 
discussed so haven't actually changed the sector-only the 
display. In other words, even if you were to resave the sector, 
it would still contain the same data. 

In order to make the change "real,"-use the<@> key to get 
the DCR prompt. Then enter<!> (Exclamation mark). The"!" is the 
previously undocumented feature. It will cause the actual sector 
buffer to be altered so as to conform to the display. Saving the 
sector now will result in your message being stored on the disk 
in the encrypted form. If, instead of the sector-display mode, 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 63 

you had been in the memory-display mode, 
would have been transfered to memory as 
<!>. 

the encrypted material 
soon as you entered the 

Some of you may have wondered what software (other than Super 
Utility itself) Kim uses during his hours at the keyboard--what 
are the software tools of his trade? I, at least have been 
curious about this, so I asked him. Kirn uses the LDOS disk 
operating system, the EDAS editor/assembler, and Jake Commander's 
Macrornon (Shadow) monitor. 

Another thing you may have wondered about is the unusual disk 
addressing scheme used by double density NEWDOS-80 and Doubledos. 
Why are the "relative tracks" different from the physical ones? 
This system is called Disk Relative Sectors or DRS. There is a 
bit of a paradox involved here. This apparent complication really 
involves an attempt to make things simpler and more transparent. 
It stems from the fact that single density is divided into two 
grans of five sectors each, but double density tracks contain 
three six-sector grans. DRS lets you pretend that everything's 
always the same. In other words, you can act as if double density 
disks still consisted of ten sectors per track. 

As an example, let's consider a double density NEWDOS-80 disk 
with a double density track zero. In reality, every track 
contains 18 sectors numbered zero through 17. I will call such a 
real. track, which consists of 18 sectors, a physical track or 
p-track. 

NEWDOS-80 will take the first ten sectors (0 through 9) of 
the first p-track zero and call them track zero. I'll call them 
relative track (or r-track) zero. That leaves eight sectors (10 
through 17) in p-track zero out in the cold. So NEWDOS takes 
those eight sectors and groups them with the first two sectors on 
the next .real track, and calls this 10 sector aggregation track 
two (that's r-track two to you). 

Notice that the first r-track 
one p-track. The second r-track 
occupies parts of two separate 
the first several p-tracks would 
numbers are in decimal: 

in our example occupies part of 
spans a real track boundary and 
real tracks! Here's a map of how 
be divided up into r-tracks. All 

Physical Relative 
Track Sector Track 

0 0- 9 0 
0 10-17 1 
1 0- 1 

1 2-11 2 

1 12-17 3 
2 0- 3 

Copyright (c) 1983 by Breeze/QSD, Inc. 



64 INSIDE SUPER UTILITY PLUS 

2 4-13 4 

2 14-17. 5 
3 0- 5 

3 6-15 6 

3 16-17 7 
4 0- 7 

4 8-17 8 

5 0- 9 9 

5 10-17 10 
6 0- l 

6 2-11 11 

6 12-17 12 
7 0- 3 

7 4-13 13 

7 14-17 14 
8 0- 5 

8 6-15 15 

8 16-17 16 
9 0- 7 

9 8-17 17 

Now suppose that to keep up appearances of normality, the 
directory is placed on r-track 17. It's actually on p-track nine. 
But NEWDOS-80 doesn't want us to be concerned with that. The idea 
is that when we want NEWDOS-80 to read a certain part of the 
disk, we tell it where to look in r-tracks and r-sectors. 
NEWDOS-80 will do all the conversions interally, and look at the 
correct real track.If you have a double density disk with a 
single density track zero, NEWDOS-80 starts relative track zero 
at real track one, sector zero. So a 35 track diskette will have 
36 actual tracks, since NEWDOS-80 doesn't count the single 
density track. 

If all that's not complicated enough, NEWDOS-80 also lets us 
vary the number of sectors per gran (or lump, as NEWDOS-80 ·calls 
them) instead of sticking to the conventional five. 

And if you have a double density system, it also allows the 
following combinations of formats: 

Method Track zero All other tracks 

Copyright (c) 1983 by Breeze/QSD, .Inc. 



The Special Edition 

1 
2 
3 
4 

single density 
single density 
double density 
double density 

single density 
double density 
single density 
double density 

65 

As you can see, NEWDOS-80 allows all possible combinations. 
But Super Utility DOES NOT support them all. If you want all of 
Super Utility's features to work on your NEWDOS-80 disks, you 
must use standard configurations. Method (3) is not supported. 
Also, you will have to use grans which consist of five sectors. 

For operations which are not file oriented, or don't in any 
way involve the directory, this restriction isn't too important. 
For such operations, configure Super Utility as if you were using 
another DOS. If the disk has format method (1), use "TS" (Model I 
TRSDOS). If you used method (2), use "D1D" (double density Model 
I DOSPLUS). If you used method (4), use "D3D" (double density 
Model III DOSPLUS) .By the way, if you use format (2), NEWDOS-80 
does another trick. It doesn't use or count physical track zero 
at all. When you boot the disk, p-track zero, sector zero will be 
read loaded into memory. But this is done by the ROM's bootstrap 
routine, not NEWDOS-80. As far as NEWDOS-80 is concerned, p-track 
zero doesn't exist. It starts r-track zero, sector zero, at 
p-track one. It even maintains a duplicate boot sector at p-track 
one, sector zero. 

Customers often phone Breeze/QSD with questions about Super 
Utility. Most of the time, their questions can be answered by 
referring the customer to a page in the Super Utility manual. I 
blush to admit that I've made a couple of those calls myself. 

Judging by the calls Kim receives, one of the most ignored 
parts of the manual is Note 6. It explains that when working with 
NEWDOS-80 or Model III TRSDOS diskettes, you must specify an 
exact track-count. The track-count required is obtained by 
subtracting one from the real track-count. Note 6 is quite 
explicit. Please read it if you use Super Utility on Model III 
TRSDOS or NEWDOS-80 disks. 

While I'm on the subject, here's a follow-up warning. 
Remember, in the new version, you can no longer prevent the 
system from updating the configuration table and it may not 
remain the way you left it. Therefore, you may have configured 
Super Utility with a correct track-count, but Super Utility may 
no longer be using it~ Therefore, it's a good habit to use DOS 
specifiers and track-count overrides when working with TRSDOS III 
and NEWDOS-80 disks. 

As an example, suppose you want to check the directory of a 
40 track Model III TRSDOS disk. The disk is in Drive 0. When 
Check Directory asks you to enter the Drive(s), instead of 
entering "0," enter "0TD=40." TD is the DOS specifier for TRSDOS 
III and 39 is the real track-count. Now, regardless of what is in 

Copyright (c) 1983 by Breeze/QSD, Inc. 



66 INSIDE SUPER UTILITY PLUS 

the configuration table, Super Utility will be able to handle 
things properly. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

E>ncode or 
Filename? 
Reading 
SU6A/L 
Access 
OM 
Update 
MU 

Figure 11 

D>ecode? d 
su6a/l 
Drive 1, Track 

=FB2DH. 
=FB2DH. 
=E32FH. 
=E32FH. 

Key <ENTER> 

40, Sector-

Copyright (c) 1983 by Breeze/QSD, Inc. 

1 7, 



68 INSIDE SUPER UTILITY PLUS 

Here's a another warning about Model III TRSDOS. System files 
are not logged into the directory. This has some unpleasant 
implications. For instance, suppose Zap's verify Sectors routine 
reports a bad sector on a TRSDOS III disk. You then use File 
Utilities' Sector Allocation program to see if that sector is 
allocated. It's possible that Super Utility will report the 
sector as unallocated, even though in reality the sector contains 
a system file. You might then Format Without Erase the disk, 
selecting the S>kip option whenever Super Utility balked at the 
bad sector. If you did so, you would probably end up with a disk 
which wasn't functional. One preventative measure would be to 
follow the directions in your Super Utility user's manual, note 
16. This will tell you how to create normal directory entries for 
the system files. Another solution would be to use the technique 
described in note 14 to look at all the system files on one of 
your TRSDOS III disks. Make a note of all the sectors they 
occupy. The system files should be located in the same relative 
positions on any other TRSDOS III disks you have, especially if 
they're all descended from the same master disk. Keep the list 
handy. When Super Utility tells you a sector is unallocated, 
cross check it with your list of system sectors to be sure. 

Another peculiarity of Model III TRSDOS is the way it treats 
passwords which encode to zero. It changes them to something 
else. A result of this is that when you use File Utilities' 
Compute Passwords, the passwoid it gives you might not work. This 
will happen when the password happens to be one which encodes as 
zero. 

If you should get a password that doesn't wbrk, just use 
Purge's Remove All Passwords utility. Or use Zap to change the 
individual file's password in the directory. Start by looking at 
the disk's directory sectors until you find the entry for the 
target file. Remember, each directory entry occupies two lines of 
Zap's display. The encoded hash value should be the first two 
bytes of the second line of the file's entry. If Super Utility 
gave you a password which didn't work, you should find that those 
two bytes are zeros. Use the modify mode to change either or both 
of them to anything else. Then go back and rerun Compute 
Passwords. The password given this time will work. 

While we're on the subject of Super Utility and passwords, 
here's something else you should know. Figure 11 reproduces the 
input and output of a typical session with File Utilities' 
Compute Password. 

As you can see, both the update and access passwords are 
decoded for us. The format of the output is as follows: first the 
filename is displayed in uppercase. Below that is the word 
"Access" followed by some spaces and an equal sign. To the right 
of the "=" is the encoded access password in Hex. On the next 
line is the decoded access password, followed by some spaces, and 
equal sign, and a repetition of the encoded access password. The 
format is repeated for the update password. The decoded update 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

E>ncode or 
Filename? 
Reading 
SUB6/L 
Access 

Update 

Figur~ 12 

D>ecode? d 
su6b/l 
Drive 1, Track 

=9642H. 
=9642H. 
=9642H. 
=9642H. 

Key <ENTER>. 

40, Sector 

Copyright (c} 1983 by Breeze/QSD, Inc. 

17. 



70 INSIDE SUPER UTILITY PLUS 

password is displayed once, while the encoded update password is 
displayed twice. This is all fairly clear. But now suppose we run 
Compute Password on a file which doesn't have any passwords. The 
display would look something like the one shown in figure 12. The 
passwords have been displayed as a series of blank spaces--which 
is what they actually are. 9642H is the way a blank password 
encodes in the directory. But if you haven't used Compute 
Password before, the display can be a little confusing. You might 
think that Super Utility is trying to tell you that 9642H is the 
decoded password. So, if Compute Password ever gives you an 
answer that looks like the one in figure f2, remember--it means 
the passwords are blank. 

Furthermore, the algorithm which the password routines in 
Super Utility use will depend on how the configuration table for 
drive 0 is set up. This means that if drive 0 was set up for 
TRSDOS 1.3, then the TRSDOS algorithm will be used. If it was set 
up for anything else, then the standard algorithm will be used. 

The new version of Super Utility now includes full support for 
the Radio Shack double density board for the Model I. Super 
Utility is now able to recognize automatically which doubler is 
installed in the computer and use it properly. Also, full support 
for Radio Shack's double-density system for the Model I, TRSDOS 
2.7D, is built in. While you may configure Super Utility to 
recognize the Radio Shack doubler ("Doubler=R") or someone else's 
("Doubler~X") it is not really necessary as Super Utility will 
determine the type of equipment it has to deal with, and adjust 
accordingly. 

Judging by the.calls and letters Breeze/QSD gets, there is a 
certain mistake which people make rather frequently--one that can 
completely crash the program. What they do is overwrite part of 
Super Utility with other data. A common time for this to happen 
will be during the use of Memory Utilities--especially Sectors to 
Memory and Track to Memory. When asked to specify a buffer, they 
will choose one too low--one right in the middle of Super Utility 
itself. When the track or sectors are read in, they overwrite a 
vital part of Super Utility. The crash may materialize 
immediately, or later on when a different program module is used. 
The best way to avoid this is to just press <ENTER> and default 
when Super Utility asks you to specify a buffer location. Super 
Utility will then automatically choose a safe area of memory and 
inform you of its location. Remember, when in doubt, default! 

Extending a disk means adding tracks to it without erasing the 
data already ori the disk. For instance, you can extend a 35 track 
diskette to 40 tracks. Elsewhere in this book, I discribed a very 
awkward method of extending disks using Format without Erase. 
Here's the easy way to do it. 

Go into Super Utility's Disk Format section and select 
Standard Format. Answer the "Name," "Date," and "Password" 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 71 

prompts as you please. Answer the "Use Configuration?" prompt by 
entering <N>. This will result in your being prompted with "DOS, 
Tks, Dir, St Tk ?" 

You are being prompted to enter the DOS specifier, the 
track-count, the directory track number, and the starting track. 
Suppose you have a 35 track Model I TRSDOS disk oh drive one 
which you want to extend to 40 tracks. Its directory is on track 
17. Follow the instructions in the preceding paragraph. When 
Format gives you the "DOS, Tks, Dir, St Tk ?" prompt you will 
enter "A, 40, 17, 35." 

"A" is the DOS specifier for Model I TRSDOS. "40" is the 
number of tracks you want the disk to end up with. "17" is the 
number of the directory track. The disk, to begin with, has 35 
tracks. Since ~he first track is numbered zero, the highest one 
is number 34. So you want to start the extension process to start 
with track 35. After adding the tracks to the disk, Super Utility 
will ask you if it should rewrite the directory and boot. It is 
very important that you answer "no," since an affirmative answer 
would result in the current directory's being wiped out. 

After the format is completed, finish the process by going to 
the Disk Repair module and running Repair GAT. Use a track-count 
override equal to the new number of tracks on the disk. In our 
current example, when Repair GAT asks 'Drive I?', you'd respond 
'1A=40' (This procedure will give you a 40-track TRSDOS disk, but 
does not mean that TRSDOS will automatically recognize the extra 
tracks. TRSDOS for the Model I can be extremely stubborn about 
refusing to recognize that it has been handed a free gift --Ed.) 

Here's something to beware of if you're entering hex input 
into Super Utility. If you try to enter a track number of D hex, 
for example, Super Utility will interpret the 11 D11 as indicating 
that you want the directory track. The way around this is to 
enter "0DH" instead of "D." 

Earlier, I referred to the danger of using the double-step 
configuration for writing. To review, the double-step mode lets 
you use an 80 track drive (96 Tracks Per Inch) with diskettes 
formatted in 35 or 40 track drives (48 TPI). In such 
circumstances, it is safe to read. But if you try to write in the 
double-step mode, the written track will not be as wide as a true 
48 TPI track. 

The .write operation may seem to be successful at first. The 
trouble usually comes when and if the target diskette is placed 
back in a 48 TPI drive. The data which was written in the 96 TPI 
drive may no longer be legible. Because of this, it is 
recommended that you software write protect any drives that are 
configured to double-step. 

In my own experience, I have gotten away with writing to 
disks while in the double-step mode. I have even been able to 
read those disks in my 35 track drive. However, there was one 
precaution I observed which probably contributed to my success. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



72 INSIDE SUPER UTILITY PLUS 

The only disks I wrote to in the double-step mode were disks 
which were freshly bulk erased. Here's a recap of my formula. To 
begin with, I have one 35 track 48 TPI drive and two 80 track 96 
TPI drives. Occasionally, I've needed to back up a 40 track 48 
TPI disk. In such a backup operation, my 35 track drive can't 
handle the innermost five tracks of eithe~ the source or 
destination disk. So both disks had to be placed in my 80 
trackers, both configured to double-step. 

Before starting the backup, I bulk-erased the destination 
diskette. Then I performed the backup. The copy I ended up with 
seemed to work _with 48 TPI drives. The bulk erase evidently 
ensured that there wouldn't be conflicting data streams under the 
wider 48 TPI read/write head. 

The bulk eraser I used was Super Utility's Software Bulk 
Erase routine (in the Format menu), configured the drive for 80 
tracks without double-step. Since this procedure worked for me, 
it may work for you. But don't count on it! Test the process 
thoroughly before entrusting valuable data to it. 

If you use a product called the Patch, you may have some 
difficulty using Super Utility. the Patch is generally 
incompatible with any program which uses a debounce delay in its 
keyboard scan. If you have installed the Patch, you may have to 
install a patch that disables Super Utility's debounce-delay. 

I once read something in Infoworld that stated that no 
disk-software protection scheme could work because whatever is 
read under head A can be simultaneously written under head B. By 
now you probably realize that with the TRS-80's FDC, this just 
isn't so. Thus, no program can automatically copy every protected 
disk. Human intervention may be needed to decipher the formatting 
tricks used and to set up a similar format on the destination 
disk. Super utility does an excellent job of attending to this 
chore automatically. 

When it first came out, Super Utility's Special Backup could 
copy almost any software on the market. More convoluted 
protection schemes have evolved. Owning Super Utility no longer 
guarantees that you'll be able to backup any disk you buy. 

Kim does not intend to improve Special Backup_ Nowadays, most 
software venders have rational backup and replacement policies, 
similar to Kim's own. Such policies allow the user reasonable 
safety and convenience with regard to backups, and spare the 
programmers and vendors the gargantuan expense incurred by 
leaving themselves vulnerable to software pirates. 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

Chapter VI 
ZAP! You're Dead! 

or, How Not to Destroy a Disk and Not Know It 

73 

Zap is probably Super Utility's most overwhelming module. It 
has the largest submenu and the greatest number of non-menu 
commands. It's also one of the easiest modules with which to 
cause irreparable damage, if you don't understand what you're 
doing. This chapter will put you and Zap through some paces 
together. If you follow the examples presented here, you'll 
explore all of Zap's features in a safe, step-by-step, fashion. 

Let's start by creating a target disk (or maybe I should say 
a victim disk). Boot up Super Utility. Then remove it from drive 
zero and replace it with an unformatted disk, or a scrap disk. 
Configure the drive for Model I TRSDOS. In case you were absent 
the day I covered configuration, that means you have to go to 
Super Utility's configuration module, and enter the "A" DOS 
specifier for drive zero. Then go to Super Utility's Format 
program and format the disk in drive zero. Answer the 'Use 
configuration?' prompt with <Y><ENTER>. This will put a standard 
Model I TRSDOS format on the disk. 

After you've formatted the disk, press <SHIFT><BREAK> to get 
the master menu. Then press <ENTER> to get the Zap menu.- Look at 
the boot sector of the disk you've just formatted: press <ENTER> 
to select the Display Sectors option. Super Utility will prompt 
you with 'Drive,Track,Sector ?" Press <ENTER> again to default to 
0,0,0. Super Utility should now read the disk's boot sector. 

On the ASCII side of the display, you'll see the message, 
'NOT A SYSTEM DISK' towards the bottom of the screen. This 
message would be displayed if you tried to boot the target disk. 
If you want to verify this, put the disk in drive zero and press 
reset. After you've seen the message, reboot Super Utility and 
get it to display the target disk's boot sector again. If you 
don't have ready access to a Model I, repeat the formatting 
process, but with an "LD" DOS specifier, instead of "TS." use Zap 
to observe the 'NO SYSTEM' message and then try to boot the disk 
on a Model III. When you've satisfied your curiosity, Please 
reformat the disk using the "TS" DOS specifier, so that you'll be 
able to follow the rest of this session. 

Suppose Me want to change the "NOT A SYSTEM DISK" message to 
something a little more dignified, like 'BOOT YOURSELF MAC'. The 
first thing to do is prepare for ASCII input. If you haven't 
changed your Super Utility defaults, you should currently be in 
the hex input-mode. You can confirm this by noting the word "HEX" 
at the top of the display's lefthand column. You should also be 
in the Paging mode. This is indicated by the single blinking 

Copyright (c) 1983 by Breeze/QSD, Inc. 



74 INSIDE SUPER UTILITY PLUS 

cursor above the word "hex." If you were in the modify mode, 
you'd see two cursors in different parts of the screen. 

Change from the hex to the ASCII mode simply by pressing <A>. 
The word "HEX" should be replaced by "ASC" to indicate the new 
status. You could just as easily have entered the decimal, 
binary, or octal mode, by keying <D>, <B>, or <O>. verify this by 
keying <D> and watching the input-mode designator change to 
'DEC'. 

Leave decimal as the input mode, for the moment, and go from 
the paging to the modify mode by typing <M>. The double cursors 
should appear. For the time being, we will be concerned mainly 
with the cursor on the ASCII side of the display. Use the arrow 
keys to place it over the "N" at the start of the message. 

You'll notice a new field, called the cursor address field, 
has appeared above the input-mode designator. It should now 
contain the number '17.' Like many of Super Utility's displays, 
it is in hexadecimal. 23 would be the equivalent decimal value. 
The field contains the relative position of the cursors within 
the sector display. The first byte in the upper lefthand corner 
of the sector display is byte zero. If you count bytes from that 
corner, you'll find that the "N" (with the cursor over it) is 
indeed sector relative byte 23 decimal (17 hex). If you're count 
was off by one, you probably started counting with one instead of 
zero. 

There are other ways you could have moved the cursor to the 
start of the message. Press <CLEAR>. This will "home" the 
cursor--move it to relative byte zero back at the upper lefthand 
corner of the data area. Now press <G>, for "GOTO." The cursor 
will change to arrows asking to be pointed in the proper 
direction. Send it to its destination by typing the digits 023. 
Presto! The cursor is back over byte 23 at the start of the 
target message. 

An interesting point has come up here. Why was it necessary 
to type '023' instead of just '23'? It's because the decimal 
input mode requires three characters to specify a byte. Remember, 
a byte is an eight bit value ranging from 0 to 255 decimal. When 
you input a number in the modify mode, you always have to enter 
as many digits as it would take to express 255 in the current 
input mode. In other words, you need to input two hex digits 
(since FF hex=255 decimal), or three decimal digits (255 dec=255 
dee) or three octal digits (FF hex=377 octal) or eight binary 
digits (FF hex=llllllll binary). You could circumvent this 
requirement, in a sense, by keying in fewer digits and then 
pressing <ENTER>. But since <ENTER> itself is a keystroke, 
there's not usually much to be gained by that approach. 

Here's yet another way to move the cursor to the desired 
position. use <CLEAR> to home it again. Now press <L> (for 
locate). Type 078. Again, the cursor goes where we want it. The 
trick is based on the fact that 78 decimal, or 4E hex, is the 
value of an ASCII "N." verify this by looking under the hex 
cursor while the ASCII cursor is over the "N." So in asking Super 
Utility to locate 078, decimal, we sent it off after the "N." 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 75 

One more time, please. Home the cursor. Now type <L><L>. 
Again, the cursor's over the same old place. Super Utility took 
the first "L" to stand for Locate. When you typed the second "L," 
Super Utility assumed it stood for Last. So it searched for the 
value used in the last search, 78 decimal or 4E hex. Naturally it 
ended up in the same place. 

Now let's change the input-mode back to ASCII, without 
leaving the modify mode. Press <ENTER> while holding down 
<SHIFT>. You should see a cursor on the input-mode designator at 
the top of the display's lefthand column. Key <H> and you'll be 
back in the hex input-mode. Press <<SHIFT> <ENTER>><A> and you'll 
be back in the ASCII input-mode. 

Now that you're using ASCII input, any alphanumeric key you 
press (including all punctuation and special characters) will be 
interpreted as ASCII input. Therefore you no longer have the <G> 
for Goto or <L> for Locate or Last features available. The <G> 
and <L> keys will now be interpreted as ASCII input. 

Time to change that message. It would be a good idea to enter 
the new message in capital letters. To avoid the need to hold 
down the shift-key, engage Super Utility's CAPs lock by pressing 
<<SHIFT><ZERO>>. Now, type the new characters right over the old 
message. Both the old and the new message are 17 characters long. 
-The old one has a period at the end; the new one doesn't. So 
don't type a period at the end of 'BOOT YOURSELF, MAC'. 

While you were typing the new message, you may have noticed 
that the disk didn't spin. In case you're wondering how you can 
be modifying a disk without the drive turning, here's the answer. 
For the moment, you're only updating a buffer. The disk remains 
as is until you're positive that the information is correct as 
entered. If you make a mistake, use the arrows to put the ASCII 
cursor back over the error and retype the character. When you've 
finished entering the new message, press <ENTER>. You'll get the 
following modification menu: 

U>pdate, R>eturn to modify, or C>ancel 

If you enter <U>, the changes you made on the video will be 
saved to the disk sector and become permanent (the sector will be 
Updated). Incidentally, hitting <ENTER> without any other input 
defaults to <U>. So don't press <ENTER> unless you're sure you 
want the sector modified. 

Entering <C> will Cancel the changes you've indicated. The 
unmodified sector will be reread into the sector buffer, and 
you'll be returned back to Zap's paging mode. 

Entering <R> will Return you to the modify mode. Your changes 
will not be saved to the disk, but they will remain in the buffer 
so you can continue modifying where you left off. ~R> is useful 
for recovering when you accidentally hit <ENTER> in the modify 
mode. To save the modified message we've created, type <U><ENTER> 
from the modification menu. That's all there is to it. If it 
seemed like a complicated process, it's only because we took many 
detours along the way, to play with special Zap features. If you 

Copyright (c) 1983 by Breeze/QSD, Inc. 



76 INSIDE SUPER UTILITY PLUS 

want, test the modification now, by trying to boot the target 
disk. 

There are still many Zap features left unexplored. Reboot 
Super Utility, go into Zap, and display the target disk's boot 
sector again. Go into the modify mode and put the cursors 
anywhere near the middle of the screen. Hold down the less-than 
key (<) for a moment, and watch what happens. This is like 
"delete" in Scripsit or the Electric Pencil. The character at the 
cursor is deleted and the characters to its right are moved over 
to fill the vacancy. The process ends at the end of the current 
sector. Zeros are "pulled in" to replace the deleted characters. 
There is no "wrap through" to the next sector. Only what you see 
on the video changes. 

The greater-than key (>) is the inverse of the less-than key, 
corresponding to a word processor's insert character function. 
Each time you press it, all the characters to the right of the 
cursor are "moved over." The entire sector following the cursor 
is pushed to the right. A zero appears in the vacated slot under 
the cursor. The last character in the sector goes over the edge 
and is lost. Again, there is no wrap through to the next sector. 
What you see is what you get. Unlike most other printable 
characters, "<" and ">" work even in the ASCII modify mode. So if 
you want to type in a greater or less-than sign as a disk 
modification, you'll have to change th~ input mode. If you go 
into the hex input mode (by pressing <<SHIFT><ENTER>> <H>), you 
can enter a less-than sign by typing 3C. A greater-than sign 
would be 3E. 

In the next chapter, which. deals with patching Super Utility 
itself, you'll get some practice modifying in hex, instead of 
ASCII. But first, let's look at some of the fancy options 
available in Zap's paging mode. If you're still in the modify 
mode (two cursors), go to the paging mode by pressing <ENTER> to 
get to the modification menu, and then <C><ENTER> to complete the 
journey back to paging. If you've been staying with me, you're 
now in the paging mode, still looking at track zero, sector zero 
of the victim disk. Tap the right arrow key. The display should 
advance to the next highest numbered sector: sector one. The 
left-arrow key works the same as the right-arrow key, except that 
it moves you to the next lowest sector, instead of the next 
highest. use it to step back to sector zero. 

Now press <<SHIFT><right-arrow>>. As you see, the right arrow 
seems to work the same way, shifted or unshifted •. The difference 
becomes apparent at a track's highest or lowest numbered sector. 
These keys auto repeat, so hold down <<SHIFT><right-arrow>> and 
watch the sectors skip through the display. The last sector 
you'll be able to read that way will be the highest numbered 
sector on the track, sector nine. When you attempt to pass it, 
Super Utility will give you a 'Disk Read Error, Sector not Found' 
type message. This is a handy warning that you've come to the end 
of the track. Answer the mini-menu by entering <S> for S>kip. 
When you find yourself back in the paging mode, use the left 
arrow to back up a sector or three. Now advance again, this time 

Copyright (c) 1983 by Breeze/QSD, Inc. 



The Special Edition 77 

using the right-arrow without the shift-key. After the track's 
last sector has been loaded, the display will advance to the 
lowest numbered sector of the next highest track. The difference 
is the same for the left-arrow versus shifted left-arrow keys. 
The unshifted arrow is usually more convenient to use. But if you 
want to restrict yourself to a certain track, use the shifted 
arrows. 

If you want to jump several sectors (e.g. from sector zero to 
five), you don't have to step sector by sector. Just press the 
number key which matches the sector you want to go to. For 
instance, to go directly to sector five of the current track, 
just press <5>. If you have double density, you may be wondering 
what to do if you want to jump to any of the sectors from 10 
through 17. To do so, press <S> for Sector. Super Utility will 
then prompt you to enter the number of the sector you want 
displayed. 

The functions of the up- and down-arrows are similar to those 
of the left and right arrow, except that the track changes, 
instead of the sector. The shifted up- and down-arrows take you 
to the disk's highest or lowest configured track, respectively. 
To jump to a track without using an arrow key to single step, 
press <T> for Track. Super Utility will prompt you to enter the 
track and sector number you wish to examine. If you want to look 
at a disk in another drive, press <CLEAR> a'nd you will be 
prompted to enter the drive, track, and sector number. 

There is yet another way to step from sector to sector. The 
greater-than (>)and less-than (<) key work similarly to the right 
and left arrow keys. There is a difference, but to demonstrate 
it, we'll have to create a special track on the victim disk. 

Go to Super Utility's format module again. Select the Build 
FormatTrack option. Answer the DOS specifier prompt with A. 
Answer the Track prompt with five. When you're invited to press 
<ENTER> to see buffer, do so. You will then be in the memory zap 
mode. Make sure the input mode is hex. Then Press enter to go 
into the memory modify mode. 

Type <L> (for "Locate,"). Then type FE. The cursor will 
position itself over the first FE in the sector. As described 
elsewhere in this book, FE is the ID address mark which declares 
the start of a sector header subfield. The first byte after the 
FE should be an 05, indicating the target sector is on track 
five. The next byte, the header byte, should be 00. The following 
byte is the sector number. Super Utility will not always start 
the track with the same sector. But if this is the first format 
track you've created since booting up Super Utility, the sector 
byte should be 08, indicating sector number eight. 

Place the cursor over the sector byte. Now change it to 40 by 
simply by typing 40 ~ver the 08. What we've done is to 
memory image of a nearly normally formatted track. 
reason for the "nearly" is that it has no sector eight. 
it has a sector 64 (40 hex=64 decimal). The next step 
that memory image onto an actual track. 

Copyright (c) 1983 by Breeze/QSD, Inc. 

create a 
The only 

Instead, 
is to put 



78 INSIDE SUPER UTILITY PLUS 

Press <BREAK> to get back to the Format menu. Select option 
5, Write Format Track. Answer the drive and track prompt with the 
drive number or the target disk and track five. The result should 
be a sector eight-less track five on the target disk. 

Press <<SHIFT><BREAK>> and go back to the Zap menu. Display 
track five, sector zero. Now hold down either the right-arrow key 
or the shifted right-arrow key and let Super Utility zip through 
the sectors. After sector seven, Super Utility will stick for a 
moment, and display a sector not found error. This is natural 
enough, since it's looking for sector eight and there's no such 
sector. Answer the mini-menu prompt with <S> for S>kip. Then use 
the left arrow to back up a few sectors. Now start your approach 
again, this time using the greater-than key (>) to step through 
the sectors. As you see, Super Utility now has no trouble at all 
finding sector nine, which is the next configured sector after 
seven. After nine, the greater-than key will step Super Utility 
to sector 64, which is the track's next highest configured 
sector. To sum up, the greater-than key finds the next highest 
configured sector on a track, regardless of the numbering scheme. 
The less-than key (<) works similarly, but finds the next lowest 
sector. 

Zap's "Read ID Address Marks" function has two modes. In mode 
one, the last three columns of data (headed "CKCRC," "IBM," and 
"DATA) are not displayed, and in mode two, they are. You may 
toggle between modes by holding down the <X> key until the mode 
changes. 

Though mode two has more information than mode one, for most 
purposes, mode one is preferable. The reason is that it works 
more quickly, and a certain disk r.p.m/interrupt phase lock 
problem is less likely to develop. This phase lock problem has to 
do with the fact that an accurately timed disk drive spins at the 
rate of 300 revolutions per minute, or five times per second. 
TRS-80 interrupts occur 40 times per second. Note that 5, the 
number of disk revolutions per second, is an exact deviser of 40, 
the number of interrupts per second. 

This relationship can cause problems which have plagued many 
TRS-80 owners. It is responsible for some of the "silent deaths" 
or "time-outs" which darken the lives of TRS-80 users. Super 

·utility is fairly immune to this difficulty, but it can slow 
things down when using "Read ID Address Marks" in mode two. It 
can also make it difficult for mode two to find all the sectors 
on a track. 

One way to help over come this problem is to break the phase 
lock by pressing <SPACE> to freeze the action and letting the 
disk stop turning. Then restart it by pressing <ENTER>. Read ID 
Address Marks's default mode is mode one. Mode one is not prone 
to phase lock problems. 

The up and down arrow keys have auto repeat in Zap's "Read ID 
Address Mark" function. However, auto repeat is very slow in mode 
2 (the mode in which the three right-most columns of data are 

Copyright {c) 1983 by Breeze/QSD, Inc. 



The Special Edition 

displayed (see note one). Auto repeat is 
Utility has trouble reading the ID marks. 
cases, you will do better to tap the 
instead of holding it down. 

79 

also slow when Super 
In either of the above 
arrow key repeatedly, 

Super Utility has a "mini-menu" which is invoked whenever a 
disk I/0 error is encountered. At such times, you will usually 
see a description of the error condition followed by the 
mini-menu. It should look something like this: 

R>etry, S>kip, C>ontinuous, N>onstop, or Q>uit? 

If you answer the prompt with <R>, Super Utility will try the 
disk I/0 operation once more. If it succeeds, it will continue 
with what ever function was under way when the error occured. If 
it fails, you will be returned to the mini-menu. 

Selecting <S> from the m1n1-menu will skip the problem 
sector, causing Super Utility to resume the interrupted function 
at the next sector. 

Selecting <C> is like selecting <R> repeatedly. After <C> has 
been entered, Super Utility will go into an indefinite retry loop 
which will continue until the disk I/0 succeeds, or you interrupt 
it with the <CLEAR> key. If you press <CLEAR>, you will be 
returned to the mini-menu. If, on the other hand, Super Utility 
eventually succeeds with the difficult I/0, it will continue with 
the interrupted function. If another problem sector is 
encountered, Super Utility will return you to the mini-menu. 
Selecting <N> from the mini-menu is like selecting <C>. Super 
Utility will automatically retry until it succeeds or is 
interrupted. However, selecting <N> also causes the mini-menu to 
be bypassed on future I/0 errors. When such errors occur, Super 
Utility will automatically go into the continuous retry mode. If 
Super Utility gets stuck on an unreadable sector, interrupt it 
with the <CLEAR> key. You may then use the <S> option, which will 
cause Super Utility to skip the impossible sector and resume its 
task. Choosing the <S> option at this time will also cause Super 
Utility to revert to prompting you with the mini-menu whenever an 
error occurs. All this has been covered in your Super Utility 
manual. The only reason I'm rehashing it here is to bring up the 
following point: 

If you choose <N> from the m1n1-menu prompt, it will take you 
out of the mini-menu-prompt-mode. Super Utility will remember 
this mode change until you reverse it by pressing clear and 
entering <S> to skip a sector. If you don't do this, you may 
later use another Super Utility function and, upon encountering 
an error, be thrown into a retry loop. For instance, you might 
use the <N> option during a Sector verify. Then you might perform 
a number of different Super Utility operations. If you don't 
encounter any I/0 errors, you may forget you're in the no-prompt 
mode. 20 minutes after the Sector verify, you might try to read a 
sector with Zap. Suddenly, the disk starts repeating the same 

Copyright (c) 1983 by Breeze/QSD, Inc. 



80 INSIDE SUPER UTILITY PLUS 

operation over and over again, and an error mes~age flashes on 
the screen and disappears. 

For this reason, sometimes when this manual says you will get 
the mini-menu, you won't. Instead, you'll go into the automatic 
retry loop. When this happens, simply wait a few seconds to give 
Super Utility a chance to successfully complete the operation. If 
it continues to fail, just press <CLEAR> to get the mini-menu 
prompt, and then enter <S> to skip the problem sector and revert 
to the standard mode. 

Copyright (c) 1983 by Breeze/QSD, Inc. 







Technical Manual 

SU+ TECH MANUAL - SOME DOS NOTES 

by Pete Carr 

1 

Back in the old pre-Newdos, pre-double density, pre-Model III 
days there was no TRS-80 DOS compatibility problem. At that time 
Model I TRSDOS was the only TRS-80 DOS. All the DOS's that have 
followed made a point to follow TRSDOS's lead as far as diskette 
structure, directory organization, for the sake of compatibility. 
So when the first version of Super Utility was released it was 
easy for it to be compatible with ALL the DOS's because ALL DOS's 
were compatible! 

But those were easier, less complicated times. With the advent 
of the TRS-80 Model III and various Double Density boards for the 
Model I, there can hardly be any so called TRSDOS-COMPATIBLE, 
standard format; because TRSDOS itself is changing so much. 
Nowadays when someone says they are TRSDOS compatible you could 
ask, "Which TRSDOS are you talking about?" Most of the new DOS's 
work in a very similar fashion to the first Model I TRSDOS. But, 
because Tandy has been changing TRSDOS so much lately there has 
really been no reason, nor would it make any sense, to attempt to 
play follow the leader anymore. So this has actually freed other 
DOS authors to pursue different roads that allow them to 
implement more powerful features. This is good and bad. It is 
good, because it allows DOS authors to apply a very creative 
approach to writing a DOS. They don't have to worry about their 
product being EXACTLY compatible with TRSDOS anymore thus can 
write without being constricted by that thought in mind. The 
result of this is that we are able to have very powerful systems 
on a TRS-80 with features like double density that once were 
thought only feasible on a much bigger computer. Kind of a 
freeing of the programmers from forced conformity, if you will. 
Of course the bad part is the lack of compatibility between the 
DOS's. Thus it seems to be getting harder to write a program that 
will run on all DOS's. 

With this reality in mind the new Super Utility Plus has made 
it easy to work on any of the major DOS's, and the disk formatted 
by them, by its CONFIG feature. I will try to give an overview of 
the popular DOS's. There is no reason to go into minute details 
that you can read for yourself in the DOS's manual. I will not 
cover the basic features of the DOS's, but only some of the 
physical ways in which they differ. Some DOS's are not being 
supported on the market anymore or are so obscure that I won't 
cover much if anything about those that fit this category. We'll 
start with a quick overview of the Floppy Disk Controllers used 
in the TRS-80. 

Copyright {c) 1982 by Breeze/QSD, Inc. 



2 Super Utility Plus 3.0 

1. FLOPPY DISK CONTROLLERS (FDC) 

There are mainly three different FDC's, that for different 
purposes, are being used in the TRS-80 Model I and III at this 
time. An FDC is actually a ROM (read only memory) program that 
can be accessed by a programmer to perform certain functions 
pertaining to the floppy disk. These functions include writing 
"Data Address Marks", Head Stepping and various other needed 
functions of controlling your floppy disk. It depends on which 
machine (I or III) and if you have one of the available Double 
Density boards installed (Model I) as to which ones apply to you. 

Model I. 

The stock Model I comes with a 1771 FDC. This controller can 
read/write up to four different "Data Address Marks". 

These can be grouped as: 

1. Standard 
2. Read Protected 
3. Deleted Data 
4. User Defined 

Double Density Model I 

When you install one of the available Double Density boards 
you then have two FDC's in your Model I. Along with the 1771 FDC 
you now have a 1791 FDC which gives the Model I the capability of 
reading/writing all the DATA ADDRESS MARKS along with 
reading/writing double density. 

Model III 

The Model III comes with a 1793 FDC. This controller can 
read/write double and single density. It recognizes "Read 
Protected" and "Standard Data" BOTH as "Standard Data". Likewise, 
it also recognizes "Deleted Data" and "User Defined" as "Read 
Protected". Furthermore, it is only capable of writing the 
"Standard Data" and "Read Protect" marks which would be 
recognized in a Mod I as "Standard" and "Deleted Data". Due to 
the differences in data address mark recognition, some authors of 
the current DOS's are using the "User Defined" address mark on 
the directory track on Mod I single density diskettes so that it 
may be detected directly on the Mod III with no conversion. 

There are a couple of other FDC's sometimes used with the 
TRS-80 that are a little different (LX80 uses a Fuji) but the 
affects they have on compatibility for the most part are very 
small. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

2. THE DISK OPERATING SYSTEMS. 

Super Utility+ DOS Config parameters 

1. TS - Single Density - Non-Ldos 
2. TD - Model III TRSDOS 
3. LS - Model I or III Single Density LDOS 
4. LlD - Model I Double Density LDOS with SOLE ·track 
5. LD - Model I or III Double Density LDOS 
6. DS - Model I or III Single Density DOSPLUS 
7. DlD - Model I Double Density DOSPLUS System disks 
8. DD - Model I/III Double Density DOSPLUS 
9. MS - Model I/III Single Density MULTIDOS 

10. MlD - Model I Double Density MULTIDOS System disks 
11. MD - Model I/III Double Density MULTIDOS 
12. BD - Model I Double Density DOUBLEDOS 
13. NS - Model I/III Single Density NEWDOS/80 V2 

3 

14. NlD Model I Double Density NEWDOS/80 V2 with Track 0 
reversed density 

15. ND - Model I/III Double Density NEWDOS/80 V2 

*NOTE: We will use TRSDOS 2.3 for the Model I as our model 
DOS. A difference is that most the other DOS's allow more than 35 
tracks which could put the directory track in a different 
location than 17 (llH). They also give you the option of Double 
Density, with the appropriate hardware, which has 18 sectors per 
track instead of 10. NEWDOS80 V2 and Percom's DOUBLEDOS do 
operate quite differently concerning the 'track sector format 
which will be discussed in the NEWDOS80 section. Model III TRSDOS 
1.3 also operates differently which will be discussed in its 
section. 

TRSDOS 2.3 

Model I TRSDOS uses a single density, 35 track, 10 sectors to 
the track, 256 bytes per sector, configuration. This DOS was 
written to be used with the FDC 1771. 

PHYSICAL STORAGE INFORMATION: 

THE DIRECTORY: Location - Trk 17 (llH) 
Sector 0 - Granule Allocation Table - GAT 

The first sector contains the Granule Allocation Table (GAT) 
information. This tells the operating system which granules are 
allocated to files or locked out and which ones are free to use. 
(One GRANULE= 5 sectors. 2 granules= 1 track). This sector also 
contains the disk master password, disk name, date and the AUTO 
command. The first 35 bytes contain information for each of the 

Copyright (c) 1982 by Breeze/QSD, Inc. 



4 Super Utility Plus 3.0 

35 tracks. In each of these 35 bytes is a HEX number representing 
allocation info about that track. 

Their meaning follows: 

FC = track empty 
FF= track full. 
FE= first 5 sectors available 
FD= last 5 sectors available 

The track lockout bytes start at byte 60H. If a track is locked 
out for some reason (unformattable), let's say track 8, then byte 
68H will contain an FFH. If the track is available for system use 
it will contain an FCH. Depending on which DOS and TRS-80 Model 
you have, you could notice that its GAT uses a set of different 
HEX bytes than the ones mentioned above, but the idea will still 
carry through. 

Sector 1 - Hash Index Table - HIT 

The Hash Index Table contains a one byte code (hash code) for 
each file stored in the directory. The location of the hash code 
points to where a file is located in the directory sectors. They 
are grouped into eight sections, one for every file storage 
sector in the directory. Since the first two sectors of the 
directory contain the GAT and HIT tables, that leaves only eight 
sectors left (single density) for the actual file information. 

Sectors 2 to 9 - File Primary Directory Entries - FPDE 
iile Extension Directory Entries - FXDE 

These sectors contain the actual directory information 
concerning the file names, attributes, passwords, size, end of 
file, etc. Each file (FPDE) is allowed 32 bytes for this 
information unless it needs more room for an extension to that 
file. An extension is used when a file can't be stored in a 
physically contiguous manner on the diskette. If a file needs 
more than 4 extensions to be written to the diskette a File 
Extension Directory Entry (FXDE) is created. TRSDOS 2.3 will 
allow as many extensions to a file as there is free disk space. 
Model III TRSDOS works somewhat differently concerning these file 
extensions which will be discussed later. 

Most of the other DOS's allocate their directory information 
very similar to TRSDOS 2.3. except for the obvious track and 
density differences. 

DOSPLUS and LDOS single density conform to the first TRSDOS 
format, but of course, its double density and Model III versions 
do differ where applicable. They use the term cylinder instead of 
track because of their doublesided and hard disk capabilities. 
Instead of 10 sectors per track the Model III and double density 
versions of DOSPLUS and LDOS contain 18 sectors per cylinder 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 5 

(track), 6 sectors per granule, with 3 granules per cylinder 
(track). 

NEWDOS80 V2 

Apparat's latest DOS has defined a new way of handling disk 
allocation. It uses a "disk relative sector" technique instead of 
using the real physical track sectors. This is the reason for the 
new term LUMP. The bytes in the GAT sector from 00 to BFH 
correspond to a LUMP instead of a track, so granules per lump is 
used instead of granules per track. NEWDOS80 V2 single density, 
uses 5 sectors per Granule, (more with double density) BUT can 
have 2 to 8 granules per LUMP. This allows the GRANS to span disk 
tracks, starting on one track and ending on another. According to 
Apparat, this maximizes the number of sectors per track while 
keeping a normal directory track format. NEWDOS80 V2 also allows 
a Single or Double density Boot track which is the reason for SU+ 
having the NlD and ND Config params. 

DOUBLEDOS from Percom also uses this "Disk relative sector" 
technique like NEWDOS80. It does not have the capabilities of 
NEWDOS80 in defining how many granules to use per LUMP or 
defining which density the BOOT shall be; but its physical way of 
handling the disk is similar. Thus, it needs only one SU+ Config 
param which is BD. 

TRSDOS 1.3 - Model III 

This DOS uses a different way of defining its directory and 
physical sector format. It contains 18 sectors per track starting 
at sector 1 instead of the usual starting point of 0. Its 
Granules are 3 sectors long for a total of 6 Granules per track. 
Its directory uses a 48 byte FPDE insiead of the usual 32 bytes. 
These extra bytes allow it to have more extensions without 
creating an FXDE (file extended directory entry). Matter of fact 
Model III TRSDOS 1.3 does not use the FXDE procedure for 
allocating file extensions at all! As stated before all other 
DOS's will continue to create FXDE's until your disk is full. 
TRSDOS 1.3 will not do this, BUT you are allowed up to 13 
extensions which should take care of all but the most unusual 
cases. A pretty good tradeoff for a cleaner and hopefully easier 
to manipulate directory, giving the DOS less chance for error! 
The other major difference is as mentioned above TRSDOS 1.3 uses 
a sector offset of 1. This means that ~ach track's sector starts 
at 1 instead of 0 like the other DOS's. Use the Super Utility+ 
config param (TD) for TRSDOS 1.3. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



6 Super Utility Plus 3.0 

PREFACE 

The contents of this manual have been revised to reflect the 
changes in the new Super Utility Plus Version 3.0. Several new 
routines have been added, and others have been recoded for 
greater efficiency or to eliminate problems. This manual should 
therefore be used with SU+ 3.0 only. 

This manual will attempt to provide the assembly language 
programmer with information needed to interface programs with 
Super-Utility Plus. This is not a tutorial on machine language 
programming, and a basic understanding of the TRS80 microcomputer 
and assembly language programming is assumed. Super-Utility Plus 
has the capability to access most devices currently available on 
the Model I and III. With this manual, routines not available in 
SU+ may be implemented by the user. This manual contains examples 
in the back of routines that may be added to the SU+ program. 

This manual does not contain source code for SU+, nor are 
specific details revealed about the intimate workings of the 
program. What will be covered in this manual is an explanation of 
the system labels and entry points available in SU+. When the 
label points to an entry point of a complex function of SU+, only 
the function of the routine is described. Thus, the entire 
sequence for "Display Disk Sectors" is not given, but just that 
it is the entry point for that complex routine. All subroutines 
throughout the program are defined and documented however. When 
one subroutine calls another, that link will usually be shown. 

Throughout this manual, the following notations will apply: 

First, the name of the label is shown, preceded by an@ 
symbol. 

Then a brief description of the function of the routine is 
given. 

Then, if applicable, the Entry and Exit conditions are given. 
If this is an entry point to a complex routine, only the routine 
itself is mentioned. Only CPU registers that are involved in the 
routine itself are mentioned. Both the entry and exit conditions 
are listed. If a register(s) is NOT mentioned in a routine, it is 
implied that it is NOT USED, or that it is NOT CHANGED. Most of 
the routines will preserve as many registers as possible so that 
parameters contaihed elsewhere are not disturbed. 

If a register or label is shown surrounded by parentheses, 
then THE CONTENTS of that register/label is implied. Thus, (HL) 
means the contents of the address pointed to by HL. If HL=4000H, 
and the byte at 4000H=0AH, then (HL)=0AH. 

Copyright {c) 1982 by Breeze/QSD, Inc. 



Technical Manual 7 

If the symbol=> appears after a register pair or label, then 
the registers/label POINTS TO an address in memory. Thus if 
HL=>@BUFFER, then HL points to a buffer to be used. 

If the symbol = appears after a register or label, then that 
register/label EQUALS the parameter. Thus, if A=drive, then the 
Accumulator must contain the drive number to be used. 

A sample printout of the addresses of the labels in the 
current version of SU+ (3.0) are given on the following page. If 
you have an older version, or none at all, please read ahead to 
'order/ upgrade information'. 

Copyright (c) 1982'by Breeze/QSD, Inc. 



8 Super Utility Plus 3.0 

@MODE 
Current modify mode number base: (1 byte) 

0 = HEX 
1 = Decimal 
2 = Binary 
3 = Octal 
4 = Ascii 

@SECTOR 
Current setting of LAST for sector number (1 byte). 

@TRAK 
Current setting of LAST for track number (1 byte). 

@CURSOR 
Current video cursor address (2 bytes). 

@EOFB 
End of file byte for current file (1 byte). 

@EOFS 
End of file sector for current file (2 bytes). 

@EOAS 
End of allocation sector for current file (2 bytes). 

@FREEG 
Free granules on current disk (2 bytes). 

@FREEF 
Free files on current disk (1 byte). 

@CGRANS 
Holds number of grans to copy in copy files (2 bytes). 

@ADDRESS 
Current address to be displayed (2 bytes). used by @SHOW. 

@DEFADDR 
Address to be used in jump to memory (2 bytes). Defaults to 

@MENU. 

@FMTBUFF 
Address used by @BUILD when formatting a track. 

@MIDMEM 
Address of the middle of the buffer area. Used by exchange 

disk sectors. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 9 

@DIRSCNT 
Holds the sector count of the last directory read into memory. 

@DIRPAGE 
Holds the position in the directory of the current portion 

being displayed by kill/restore files. Only 8 sectors of data can 
be displayed at a time, and the byte here indicates the current 8 
sector location. 

@TRUE 
The REAL track as it is read from the disk. Used by display 

disk sectors. 

@TYPE 
Indicates where the displayed data came from. 

1 = from display disk sectors 
2 = from memory 
3 = from display file sectors 

@TOPMEM 
Holds the address of the current top of memory +l. 

contains 0000H. 

@NUMTYPE 

Normally 

Holds the base of the last string where @VALUE was extracted. 

@RESULT 
Holds th~ non-masked result of the last disk I/0. 

@TEMP0 
Temporary storage area (2 bytes). 

@TEMPl 
Temporary storage area (2 bytes). 

@TEMP2 
Temporary storage area (2 bytes). 

@TEMP3 
Temporary storage area (2 bytes). 

@TEMP4 
Temporary storage area (2 bytes). 

@TEMPS 
Temporary storage area (2 bytes). 

@TEMP6 
Temporary storage area (2 bytes). 

@TEMP7 
Temporary storage area (2 bytes)., 

Copyright (c} 1982 by Breeze/QSD, Inc. 



10 Super Utility Plus 3.0 

@TEMP8 
Temporary storage area (2 bytes). 

@NMIVECT 
Non-maskable return address for disk I/0. 

version only, unused in the Mod I. 
Used by Mod III 

Located at fixed address 4049H. 

@RETNMI 
RETN instruction, normally, @NMIVECTR points here if there is 

no current disk I/0 in progress. Not executed on the Mod I. 

@FLAGA 
System parameters flag. 

@FLAGB 
System 

@SDRIVE 

Bit 7 =set= DUAL currently ACTIVE 
Bit 6 =set= Highspeed clock is ON 
Bit 5 =set= Dual Flag ON 
Bit 4 =set= Task spooler de-activated 
Bit 3 =set= Extended ID marks ON 
Bit 2 =set= Replace string in string search 
Bit 1 =set= Alive OFF 
Bit 0 =set= Keyboard case reversal ON 

parameter flag for printer (1 byte) • 
Bit 7 = set = Graphics ENABLED 
Bit 6 = set = Lower Case ENABLED 
Bit 5 = set = MX80 graphics adjust ENABLED 
Bit 4 = set = NO double density available 
Bit 3 = set = Line feeds ENABLED 
Bit 2 = set = Radio Shack Doubler 
Bit 1 = unused 
Bit 0 = set = Trace ON 

Binary drive number of current SOURCE drive. 

@DDRIVE 
Binary drive number of current DESTINATION drive. 

@KEYBRD 
Mask area used by keyboard driver (7 bytes). 

@MFLAG 
Flag indicating if DISK MOUNT prompts are to be issued. 

@DISPl 
Current DECRYPT mode (1 byte). 

following symbols: 
+ = addition 

Will contain one of the 

= subtraction 
A = AND 
0 = OR 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

@DISP2 

X = XOR 
S = SHIFT 
R = ROTATE 

Modifier byte of @DISPl (1 byte). 

11 

If+, -, A, o, or X, then this byte contains the value to be 
added, subtracted, etc. 

If Sor R, then this byte contains L or R to indicate if 
shifts/rotates are Left or Right. 

@DISP3 
Modifier byte of @DISP2 (1 byte). 
If @DISPl contains Sor R, then @DISP2 contains the direction, 

and this byte contains the number of Ro.tations/Shifts. 

@COUNT 
Temporary countdown storage (2 bytes). 

@INPUT 
I/0 buffer and work space when reading ID marks (10 bytes). 

@STRING 
Input buffer for keyboard (70 bytes). 

@STACK 
Stack area (backward for 266 bytes). 

@FILEDCB 
Device control block for filenames (16 bytes). 

@PASSWRD 
Ascii password storage area (8 bytes). 

@DCT0 - @DCT7 
Drive Code Tables for 7 drives: 

+00 = physical track count of disk 
+01 = relative track count of disk 
+02 = directory track 
+03 ::::: current head location 
+04 = resident flags 

7 = 1 = software NOT IN SYSTEM 
6 = 1 = software WRITE PROTECTED 

5&4 = READ motor delay in 1/4 secs 
3&2 = WRITE motor delay in 1/4 secs 
1&0 = disk drive step rate 

+05 ::::: resident flags 
7 = 1 = current operation is WRITE 
6 = l = double step drive 
5 = l = active in multiple drive commands 

4 = l = auto. disk detect next directory 
access 

Copyright (c) 1982 by Breeze/QSD, Inc. 



12 Super Utility Plus 3.0 

3 = 1 = attempt non-standard I/0 
2 = unused 
1 = 1 = read side 1 this access 
0 = 1 = double sided media available 

+06 = dos relative flags 
7 = 1 = double density track 0 
6 = 1 = double density disk 
5 = 1 = track 0 unavailable for file I/0 
4 = 1 = relative sectoring available 
3 = 1 = relative sectoring engaged 
2 = 1 = directory DAM'S reversed 
1 = starting sector track 0 
0 = starting sector disk 

+07 = dos type (below) 
+08 = highest sector track 0 
+09 = highest sector disk 
+10 = sectors I granule 
+11 = granules I track 
+12 = default length of directory 

DOS types: 
UNKNOWN 00 u, Ul, U3, us, UD, UlS, UlD, U3S, U3D 
TRSDOS 01 T, Tl, TS, TlS 

02 TlD 
03 T3, TD, T3D 

LOOS 04 L, Ll, LS, LlS, L3S 
05 LlD 
06 L3, LD, L3D 

DOSPLUS 07 D, D1, DS, DlS, D3S 
08 D1D 
09 D3, DD, D3D 

MULTIDOS 10 M, Ml, MS, MlS, M3S 
11* MlD 
12 M3, MD, M3D 

NEWDOS 13 N, Nl, NS, NlS, N3S 
14* NlD 
15* N3, ND, N3D 

DOUBLEDOS 16* B, Bl, BD, BlD 
EXTRA 17 x, Xl, XS, XlS 

18 XlD 
19 X3S 
20 X3D 

(* indicates relative sectoring available) 

@DCTTBL 
Table of locations of each of the 8 DCT's 

@DISPLY (RST 08H) 
Video display driver. 
Entry: Data must immediately follow the CALL. 

Data terminates with 00H. 
Exit: Control passed to byte following terminator. 

ALL registers AND Flags are preserved. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

@CONTRL 
Video display driver for control bytes (less than 20H). 
Entry: A= byte to display 

Exit: 
NOTE: 

HL = cursor position 
5 = clear screen and draw border 
6 = clear screen blank 
7 = clear lower portion of video only 
8 = backspace 

· 9 = center cursor on screen if left 
else linefeed 

10 = linefeed 
11 = upward linefeed 
13 = linefeed 
29 = move cursor to beginning of line 
30 = beginning of line AND erase line 

HL = cursor position 
(@CURSOR) is NOT updated. 

13 

half, 

HINT: It is best to display control codes via use of @DISPLY. 
To clear the·screen, for example: 

RST 
DEFB 
DEFB 

8 
5 
0 

;call @DISPLY 
;clear screen code 
;terminator 

This routine only requires 3 bytes, ALL registers are preserved, 
and (@CURSOR) IS updated. 

@GETSTR (RST 10H) 
Get a string of characters from keyboard. 
Entry: B = maximum length of input 
Exit: B = actual length of input 

@KEY 

C = maximum length of input 
HL => input string (=@STRING) 
A= first character input 
Z = NO characters input (represents status of B 

register) 

--Scan keyboard. 
Entry: NONE 
Exit: A= input character 

Z = NO character input (A= 0) 
NOTE: This call will perform the following functions: 

Repeating keys 
Upper/Lower case toggle with SHIFT 0 
Screen printer with SHIFT CLEAR 

There is NO keybounce delay with this call (very fast) 

@KIGO 
Scans keyboard for key, but keys WILL NOT repeat. 
Entry: NONE 

Copyright (c) 1982 by Breeze/QSD, Inc. 



14 Super Utility Plus 3.0 

Exit: A= input key 
BC, DE, HL are destroyed 

NOTE: Calls should be preferably made to @KEY as all registers 
except A are preserved. 

@SCREENPRT 
Sends contents of video to the printer. 
Entry: NONE 
Exit: A = 0 

Z flag set 
BC, DE, HL destroyed 

NOTE: Screenprinting is handled via @KEY, and registers are 
preserved. 

@KEYTABLE 
Lookup table for last row of keyboard (16 bytes). 

@CKDUL 

Keys represented by this table in order: 
ENTER 
SHIFT ENTER 
CLEAR 
SHIFT CLEAR 
BREAK 
SHIFT BREAK 
UP ARROW 
SHIFT UP ARROW 
DOWN ARROW 
SHIFT DOWN ARROW 
LEFT ARROW 
SHIFT LEFT ARROW 
RIGHT ARROW 
SHIFT RIGHT ARROW 
SPACEBAR 
SHIFT SPACEBAR 

If DUAL is ACTIVE, character sent to printer buffer via @POUT. 
NOTE: This call is made by @DISPLY to check for DUAL 

operation. 

@DLON 
A call here copies bit 5 from @FLAGA to bit 7. 
If DUAL is ON, but INACTIVE, it will be made ACTIVE. 

@DLOFF 
Will DEACTIVATE DUAL, but not turn it off. 
NOTE: @DLOFF is used when the message: 

Reading/Writing/Verifying Track x, Sector x 

is being displayed to prevent the repeated messages from being 
sent to the printer. Thus if dual is ON, and a directory is being 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 15 

read, for example, the directory listing will be sent to the 
printer, but not the READING messages. 

@DLON will reinstate DUAL if it was ON prior to @DLOFF. 

@SPOOL 
This is the printer spooler driver. It is called under 

interrupt service. If (@PRBUFF) is zero, then there are no 
characters in the buffer, and nothing is done. If there ARE 
characters in the buffer, the shift@ key is checked. If pressed 
then the buffer is srnptied. 

@POUT 
Send a 
Entry: 
Exit: 

byte to the printer buffer to be spooled. 
A = character to be printed 
ALL registers AND Flag are preserved 

NOTE: This does not PRINT the byte, but merely inserts it into 
the printer buffer to ,be printed later under interrupt service. 
If the buffer is FULL (400H bytes), then this routine will wait 
till space is available. 

@XREAD 
Reverses status of IBM read, then jumps to @READNS. 
Entry/Exit: Sarne as @READNS 

@READNS 
Read a disk sector into a memory buffer. 

No SEEK operation is performed, so the drive 
positioned over the correct track. This routine 
NON-STANDARD sector. 

Entry: D = Track 
E = Sector 
BC=> Buffer 

head MUST be 
will read a 

Exit: 
(@DRIVE) = bit pattern for drive to be read 
BC=> Buffer+l00h (set for next READ) 
HL is destroyed 
Z = OK 
NZ= Bad, error status in A 

@WRITENS 
Write a disk sector from memory buffer. 
Sarne as @READNS, but will WRITE a disk sector. 

@TREAD 
Reverses the density of the drive, then jumps to @READ 

@READ 
Normal call to read a standard disk sector. 
Head is positioned to the correct track before the read 

operation is performed. 
Entry/Exit same as @READNS. 

@TWRITE 

Copyright (c) 1982 by Breeze/QSD, Inc. 



16 Super Utility Plus 3.0 

Same as @TREAD, except sector is WRITTEN to the disk. 

@WRITE 
Normal call to write a standard disk sector. 
Seek operation is performed to position to correct track. 
Entry/Exit same as @READNS. 

NOTE: In all the above Disk I/O routines, the register 
contents for Entry/Exit are the same. Normally, calls to @READ 
and @WRITE will be used for standard diskettes. Automatic density 
recognition can be achieved as follows: 

@FLIPDEN 

CALL 
CALL 
CALL 
JP 

@READ ;attempt to read the sector 
NZ,@TREAD ;if bad, try other density 
NZ,@BADRD ;bad in both densities 
NZ,SUBMENU;abort function 

Reverses the density of drive. 
Entry: (@DRIV) = Binary drive number 
Exit: A is destroyed 

@READ! 
Vector for @READ, perform SEEK operation. 

@READlS 
Vector for @READNS, SEEK operation bypassed. 

@RDTYPE 
Byte to be used for READ operation. 
Mod I single density: 

88H = IBM format read 
80H = Non-IBM format read 

Mod III/ Mod I double density: 
80H = IBM format read 

@WRITE! 
vector for @WRITE. A SEEK is performed. 

@WRITElS 
vector for @WRITENS. SEEK operation bypassed. 

@WRTYPE 
Byte to be used for sector write operation. 
Mod I/ Single - Double Density: 

A8H = STANDARD address marks 
A9H = READ PROTECTED address marks 

Mod I/ Single Density: 
AAH = DELETED DATA address marks 
ABH = USER DEFINED address marks 

Mod III: 
A0H = STANDARD address marks 
AlH = READ PROTECTED address marks 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

@SEEK 
Move drive head to specified track. 
Entry: D = Track to move head to 
Exit: Z = OK 

NZ= Bad, error code in A 

@SELECT 
Select a drive and turn motor on. 
Entry: (@DRIVE) = bit pattern for drive 
Exit: Z = OK 

NZ= Bad, error code in A 

@DRIVE 
Bit pattern for drive to operate on 

Bit 3 = Drive 3 
Bit 2 = Drive 2 
Bit 1 = Drive 1 
Bit 0 = Drive 0 

NOTE: All routines involving (@DRIVE) may be set via @SETDRV 

@DSKSLO 
Delay loop to wait before valid status can be read from FDC. 

@DELAY 

17 

Decrement BC till 0. If Highspeed clock is ACTIVE, the delay 
count will be doubled. 

Entry: BC= Delay count (0 - FFFFH) 
Exit: BC= 0, ALL other registers AND Flag are preserved. 

@DRIV 
Binary drive number for current drive (0-3). 

@RESTORE 
Move head on a drive to track 0. 
Entry: (@DRIVE) = bit pattern for drive to be used 
Exit: HL = destroyed 

@MOVCOMM 
Common 
Entry: 

Exit: 

@MOVE HEAD 

Z = OK 
NZ= Bad, error code in A 

routine for all drive head motion commands. 
(@DRIVE) = bit pattern for drive to be used. 
A= command to be issued 
HL = destroyed 
Z = OK 
NZ= Bad, error code in A 

Issue head motion command to FDC, and wait till done. 
Entry: (@DRIVE) = bit pattern fo,r drive. 

A= command to be issued 

Copyright (c) 1982 by Breeze/QSD, Inc. 



18 

Exit: 
HL = 37ECH (if Mod I) 
Z = OK 
NZ = Bad, error code in A 

Super Utility Plus 3.0 

NOTE: All of the above head motion commands are handled normally 
via calls to @READ and @WRITE. 

@STEPIN 
Move head on a drive IN one track (away from track 0). 
Entry: (@DRIVE) = bit pattern for drive 
Exit: HL is destroyed 

Z = OK 
NZ= Bad, error code in A 

@STEPOUT 
Move head on a drive OUT one track (toward track 0). 
Entry/Exit: same as @STEPIN 

@DOSEEK 
Move head to track specified by D register. 
Vector from @SEEK if head NOT already on specified track. 

@SETDRV 
Set @DRIVE and @DRIV for future table/disk operations. 
Entry: A= Binary drive number (0-3) 
Exit: A= Binary drive number IN ASCII 

(@DRIVE) = bit pattern for selected drive 
(@DRIV) = binary drive number supplied at Entry 

@DRVASC 
Get current drive number IN ASCII. 
Entry: (@DRIV) = binary drive number 
Exit: A= d~ive number in Ascii 

@TASK 
Interrupt service (background task). 
Following operations are performed every 25 ms in the Mod I 

and every 33 ms in the Mod III: 
1. Check if BREAK key is pressed 
2. If NO, then goto step 6. 
3. If YES, and NO SHIFT KEY, do step 5, then JP 4018H 
4. If YES, and SHIFT KEY, do step 5, then JP 4015H. NOTE: 

4015H jumps to master menu, 4018H returns to sub-menu 
5. Print <BREAK>, wait till key is released, and return 
6. If master menu is displayed, change+ to ! 
7. If ALIVE is ACTIVE, change corners on video 
8. If any bytes in printer buffer, send to the printer 

@SETNMI (Mod III only) 
Setup routine for disk I/0 for non-maskable interrupts. 

@MASTER 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 19 

In the event that the return vector to 
invalid, a jump here will be forced to 
vector and normalize the pointers. Control 
@MENU. 

a sub-menu (4018H) is 
initialize the @WHERE 
will then be passed to 

@MENU 
Entry point to MASTER MENU. 

@MENWHR 
Lookup table to get jump vector for selection from the master 

menu. First byte in table is the# of entries present. 
Each entry in the table (and all menu tables), is 2 bytes 

long, and the table is terminated with 0. Corresponding table 
-entry is calculated. 2 bytes indicate the address where control 
is to be passed. 

@GETSEL 
After printing a menu/sub-menu, DE points to a table of 

allowable responses and jump vectors. 
DE=> table of input/vectors as above 

Prints 2 linefeeds, then asks "Selection? " 
Call @GETSTR, allow 1 character maximum. 
If "L" is entered, get LAST from table and return 
If ENTER is pressed alone, jump to first address in table. 

Otherwise, put byte in LAST, and compare to table. 
If match is found, jump to appropriate routine, else ask 

again. 

@GOTABLE 
Locate byte in A in table, and jump to appropriate vector. 
Entry: DE=> table of 3 byte entries, 0 terminator 

(first byte is number to match, followed by a 2 
byte address in the case of a match) 

A= number to locate in table 
Exit: If match is found, return address is popped off the 

stack and a jump is made to the corresponding vector 
If no match is found, control will return to caller. 

EXAMPLE of use of @GOTABLE 

EXAMPLE RST 8 ;call display driver 
DEFB 10 ;linefeed 
DEFM 'Choice ? I ;prompt 
DEFB 0 ;message terminator 
LD B,l ;allow one key input 
RST 10H ;get keyboard input 
JR Z,EXAMPLE ;nothing, try again 
LD DE,TABLE ;point to table of 

;responses/vectors 
CALL @GOTABLE · ;check if a match 
JR EXAMPLE ;will not return if a 

;match is found 

Copyright (c) 1982 by Breeze/QSD, Inc. 



20 Super Utility Plus 3.0 

@ZAP 
--Entry point to ZAP sub-menu 

@ZAPWHR 
Table of jump vectors for reply to Zap menu (used by 

@GOTABLE). 

@SETUPS 
Each sub menu calls here to update (@WHERE) for return vector. 
The stack is initialize to the starting area. 
Entry: A= sub menu number 

@INKEY 

0 = master menu 
1 = @ZAP 
2 = @PURGE 
3 = @FORMAT 
4 = @COPY 
5 = @REPAIR 
6 = @TAPE 
7 = @MEMORY 
8 = @FILES 
9 = @CONFIG 

Call @KEY, and add debounce delay. 

NOTE: This is the normal call to strobe the keyboard. 

@GOBACK 
Display "Press <ENTER> to continue. " message, wait for the 

enter key, then return to sub-menu via @RETURN 

@RETURN 
Takes byte from @WHERE (sub-menu number), loads DE with 

@RETADD and calls @GOTABLE. If a match is found, then a jump is 
made to the appropriate sub-menu. If no match, and jump to 
@MENU00 to re-normalize the @WHERE vector. 

NOTE: This is the normal exit from ALL routines in SU+ 

@WHERE 
Number of the current sub-menu. See @SETUPS for details on 

values found here. 

@RETADD 
Lookup table of vectors to sub-menus. Used by @RETURN. 

@PRESS 
Display "Press <ENTER> to continue "message, wait for enter 

key, then return to caller. 

@DISDSK 
Entry point to Display Disk Sectors routine. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 21 

@DISTBL 
Lookup table for responses to "paging mode" in Display Disk 

Sectors. 

@NEXSEC 
Advances DE to next sector on the disk. 
Entry: D = Track 

E = Sector 
Exit: DE= next track sector 

A is destroyed 

@DOWNSEC 

C = disk limits have been exceeded (D >= (@TRACKS) ) 
NC= OK 

Advances DE BACKWARDS to next sector on the disk. 
Entry: DE= Track/Sector 
Exit: DE= next sector BACKWARDS 

A is destroyed 
If DE is on the FIRST sector on the disk, nothing done 

@TRKEND 
Returns the highest sector number on current track. 
Entry: D = current track 
Exit: A= highest sector number on current track 

@FIRSTS 
Load E with first sector on track indicated by D. 

@ADDR20 
Sector numbers are read from the disk 20 time via @ADDR. 
Numbers are stored sequentially starting at @DAMBUFF. 
Used to locate the highest/lowest sector on a track. 
Entry: (@DRIVE) = bit pattern for selected drive 
Exit: A, B, HL, IX are destroyed 

@GETDAT 

20 sector numbers from current track stored at 
@DAMBUFF 

Get "Drive, Track, Sector?" from keyboard. 
Entry: NONE 
Exit: (@DRIVE) and (@DRIV) valid for selected drive. 

DE= Track/Sector 

NOTE: If drive is not specified, then 0 is used. If 
track/sector not specified, then the first sector on the disk is 
used. 

@ASCII (RST 18H) 
Convert binary number to asc11. 
Entry: A= binary number to convert 
Exit: ACB = ascii number 

EXAMPLE: 

Copyright (c) 1982 by Breeze/QSD, Inc. 



22 Super Utility Plus 3.0 

NUM 

@POSHL 

LD 
RST 
LD 
LD 
RST 
EQU 
DEFM 
DEFB 

A, 127 
18H 
(NUM) ,A 
(NUM+l) ,BC 
8 
$ 
'xxx' 
0 

Parse through string, skip spaces and commas. 
Position HL to first valid character. 
Entry: HL => string 
Exit: A= first non-blank, non-comma character 

HL => first character 

;start with binar 
;convert to ascii 
;store MSB instr 
;store rest in st 
;display the numb 

;where it goes 
;message terminat 

Z set if first character is terminator (0DH) 

@MOVE 
Move block of data. Blocks may overlap. 
Entry: HL => Source address of data 

DE=> Destination address of data 
BC= Length of data to be moved 

Exit: A is unused only 

@VALUE 
Extract 
Entry: 
Exit: 

@PURGE 

value from input string. 
HL => string 
BC= value of input 
HL => terminator (space, 
C = invalid number 

Entry point to Purge Utility 

@PURWHR 

comma, C/R) 

Lookup table for responses to Purge Utility Selection. 

@FORMAT 
Entry point to Format Utility. 

@FMTWHR 
Lookup table for Format Utility Selection. 

@COPY 
Entry point to Disk Copy Utility 

@CPYWHR 
Lookup table for Disk Copy Selection. 

@REPAIR 
Entry point to Disk Repair Utility 

@REPWHR 

Copyright {c) 1982 by Breeze/QSD, Inc. 



Technical Manual 23 

Lookup table for Disk Repair Selection. 

@MEMORY 
Entry point to Memory Utility 

@MEMWHR 
Memory Utility lookup table for selection. 

@TAPE 
Entry point to Tape Utility. 

@TAPWHR 
Lookup table for Tape Utility Selection. 

@FILES 
Entry point to File Utility. 

@FILWHR 
Lookup table for File Utility Selection. 

@EXIT 
Entry point to EXIT program routine. 

@DEAD 
Executes a RST 0 on the Mod III, or a HALT on the Mod I. 

@MOUNTSYS 
Asks for SYSTEM disk to be mounted, and waits for ENTER key to 

be pressed. Video line is then cleared. 
Entry: (@DRIV) = binary drive number to be mounted 
Exit: A is destroyed 

@ONEKEY 
Waits for ENTER key to be pressed, then clears the current 

line the cursor is on. 
Entry: NONE 
Exit: A is destroyed 

@MOUNTSRC 
Asks for SOURCE disk to be mounted, and waits for ENTER. 
Entry: (@DRIV) = binary drive number for disk to be mounted 

on. 
Exit: A is destroyed 

@MOUNTDES 
Asks for DESTINATION to be mounted, and waits for ENTER. 
Entry: (@DRIV) = binary drive number to be mounted. 
Exit: A is destroyed. 

@DRVCOMM 
Executes a common routine for all active drives. 
Entry: Bit 5 set in (IY+S) indi~ates active drive. 

DE= Address of common call for all drives. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



24 

Exit: 

Super Utility Plus 3.0 

BC = Address of exit to make when all drives 
completed. 

IY => DCT for current drive 
Made to address supplied by BC. 
BC, DE A are destroyed 

NOTE: The ENABLE bit in @DCTx is set properly by making a call to 
@GETDRVS. HL, IX are not used, and may be passed along. 

@DRIVE and @DRIV are updated to each current drive before the 
call is made to each subroutine. 

@POSA 
Current drive counter used by @DRVCOMM. User subroutines may 

alter the contents of @DRIVE and @DRIV if needed, and they will 
be corrected by @POSA when the current drive is completed. 

NOTE: (@POSA) and (@DRIV) are equal when entry is made to the 
subroutine for each drive. 

@INITDRVO 
Sets all drives in DCT's as ACTIVE. 
ALL registers are preserved. 

(Sets bit 5 (IY+S) 

@INITDRV 
Sets all drives in DCT's as INACTIVE (Resets bit 5). ALL 

registers are preserved. 

@SHOCONFG 
Inserts SOFT CONFIGURE setting onto video display. 
Registers AF, BC, DE, HL, IY are used. 

NOTE: This displays the SETTINGS ONLY, not the headings. 

@SETYES 
Loads 
Entry: 
Exit: 

"Y" or "N" into A depending on 
z flag set/reset as applies. 
If NZ, then A= "Y" 

Z flag. 

NOTE: 
depending 

BIT 
CALL 
LO 

@DSTAT 
Checks 
Entry: 

Exit: 

If Z, then A= "N" 

This is useful for inserting ascii Y or 
on the setting of a flag bit. EXAMPLE: 

3, (IY) ;check for status bit 
@SETYES ;load A with Y or N 
(MSG) ,A ;put into string 

N into a string 

~tatus of disk drive (disk mounted and door closed). 
(@DRIV) and (@DRIVE) indicate the drive to be checked. 
If drive NOT READY, message to correct the problem are 
displayed. 
Z = OK 
NZ = "Skip this drive" was selected 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

@STAT 
Checks status of disk drive. 
Entry: (@DRIVE) and (@DRIV) indicates drive number. 

If drive NOT READY, no message is displayed. 
Exit: Z = OK, drive mounted and door closed. 

NZ= Drive NOT READY, HL => error condition message. 

@SELDEN (Mod I only) 
Selects the proper FDC controller in the Mod I. 
Entry: (@DRIVE) and (@DRIV) = drive number to use. 

25 

Exit: If single density selected then the 1771 controller is 
selected. 
If double density selected then the 1791 controller is 
selected. 
A and A' are used. 

NOTE: This routine only applies if a hardware double density 
modification has been installed. The Mod I has TWO floppy disk 
controllers (FDC) for double density operation. The Mod III has 
ONE controller that performs both single and double density. 
Hence this routine is not needed in that machine. 

@ZBUFF 
Zeros a 
Entry: 

memory buffer. 

Exit: 
BC=> Address to be cleared. 
256 bytes of zeroes written to 
ALL registers are preserved. 

the buffer. 

@RXFER 
Handshaking routine used for disk I/0. 
Entry: Mod I: HL = 37ECH 

DE= 37EFH 

Exit: 

BC=> Memory buffer 
Mod III HL => Memory buffer 

D = (@DRIVE) 
E = 2 
B = 0 (byte counter) 
C = F3H (port address) 

Data transferred to address supplied. 
(@RESULT) = non-masked result of operation. 
(@TEMPFF) = address +l of last byte transferred. 

NOTE: Read command must be issued BEFORE calling this. This is 
normally called via @READ. 

@WXFER 
Transfer data 
Entry/Exit: 

disk. 

@ADDR 

from FDC to memory buffer. 
same as @RXFER, except data is 

Reads 1 address mark from disk on, current track. 
Entry: (@DRIVE) is valid for drive to be used. 

Copyright (c) 1982 by Breeze/QSD, Inc. 

transferred TO 



26 

Exit: 

Super Utility Plus 3.0 

HL=> 6 byte string of values read in: 
Track, Head, Sector, Length, and 2 CRC bytes 
All other registers preserved except A. 
Z = OK 
NZ = Bad, error code in A. 

NOTE: this is called by @DISDSK to determine the REAL track on 
a disk, versus the RELATIVE track. 

LD A,l ;use drive 1 
CALL @SETDRV 1set it up for use 
CALL @ADDR ;read address mark from disk 
LD A,(HL) ;get REAL track as read from disk 

@UCASE 
Convert byte in A to upper case. 
Entry: A= byte to be converted. 
Exit: A= upper case equivalent. 

NOTE: Only bytes from a-z (lowercase) are converted. 

@FIGDRV 
Used to 
Entry: 
Exit: 

@DDOSFIX 

interpret a drive number from an input string. 
HL => input string 
If no drive is specified, then drive 0 is defaulted. 
If DOS specifier is appended, then DCT +7 is set. 
If =tks is specified, then DCT+0/+l is set. 
NC= OK 
C = invalid input for drive number. 

DE (track/sector) is adjusted to DISK RELATIVE sector if ND80 
DD, Multidos, or DoubleDOS sector is being read. 

Entry: DE= Track/Sector to be read 
Exit: Original value left on stack, and DE is returned with 

the correct RELATIVE value. 

LD 
CALL 
POP 

DE,0 
@DDOSFIX 
HL 

;track 0/ sector 0 
;compute RELATIVE sector 
;DE = RELATIVE sector, HL = REAL 
;sector 

NOTE: This routine is called by @READ and @WRITE to adjust 
To the correct value for the corresponding DOS. 

@TASKDRV 
If a disk sector is NOT FOUND on a bad read, this routine will 

insert a 0 into the current track for that drive. This forces an 
@RESTORE call to be made the next time that drive is read to 
position to the correct track. 

Entry: (@TASKDRV) = C9H (RET) if NO error 
(@TASKDRV) = 00H (NOP) if error HAS occured. 

Exit: If error HAS occured, thep the current track for the 
drive specified by (@DRIV) is updated to 0 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 27 

If NO error, then nothing is done. 

NOTE: This vector is handled normally by the system, and is 
called by @RETURN at the completion of each routine. 

@TURNSPEED 
Turns high speed clock ON or OFF appropriately. 
Entry: Bit 6 of @FLAGA =set= turn speed ON 

Bit 6 of @FLAGA =reset= turn speed OFF 
Exit: If Bit 6 = 0, then @SPEEDOFF is executed. 

If Bit 6 = 1, then @SPEEDON is executed. 

@SPEEDOFF 
Eight bytes of instructions to turn high speed clock OFF. 

@SPEEDON 
Eight bytes of instruction 
The instructions may be 

Normally only A is used, but 
registers. 

to turn high speed clock ON. 
modified via CONFIGURE commands. 
may be user definable to use other 

@CONFIG 
Entry point to SOFT CONFIGURE routine. 

@FIXFLG 
Sets a bit of a flag byte. 
Entry: DE=> flag byte to be used. 

C = mask byte of bits to be RESET. 
B = mask of bits to be SET. 

Exit: (DE} are updated 
Exit is made via @POSHL to move HL to next byte in string. 

LD DE,@FLAGA ;point to flag A 
CALL @YESNO ;set z or NZ if A = 

;or II NII 
LD BC,807FH ;bit 7 mask bytes 
JR Z,CONT ;skip if answer is y 
LD B,0 ;else 

;RESET 
CONT EQU $ ;label 

CALL @FIXFLG ;bit 7 
;RESET 

@ASKFIG 
HL = video location to get keyboard input. 

(Normally called through @CONFIG} 
Entry: HL = video location for prompt 

set bit 7 

CONT 
(DE} is 

if II y II or 

Exit: Left 2 characters on EACH video line is erased. 
=> prompt displayed at location (HL) 

Exit condition for @GETSTR applies, 60 chars maximum. 

@YESNO 
Checks if A contains 11 Y11 or 11 N" 

Copyright (c) 1982 by Breeze/QSD, Inc. 

to 

SET 
II NII 

II y II 

be 

or 



28 

Entry: 
Exit: 

A= character to check 
Z = A contained "Y" or "y" 
NZ= A contained "N" or "n" 

Super Utility Plus 3.0 

C = neither of the above was found 

@SHOW 
Displays block of data in memory to the screen 
Entry: (@ADDRESS) = starting address to display 
Exit: 256 bytes of data are displayed to the screen 

If decrypting is specified, it will be displayed. 
Screen will contain HEX and ASCII representations of 
data. 

This routine is normally called through display disk sectors, 
file sectors, memory, or build track. Any address may be 
displayed. 

@HEXCV (RST 20H) 
Convert binary number in A to HEX ASCII. 
Entry: A= binary number to convert 
Exit: BC= HEX ASCII representation (LSB, MSB) 

LD 
RST 
LD 
RST 

A, 16 
20H 
(MSG) ,BC 
8 

MSG EQU $ 

;number to be converted 
;convert to ASCII 
;insert into string 
;display the message 
;label MSG 

@SHOWST 

DEFM 
DEFB 

'xx' 
0 

;actual string to display 
;terminator 

Displays error message from disk I/O. 
Entry: A= error condition 

C = error occured during READ operation 
NC= error occured during WRITE operation 

Exit: Message is displayed to the screen 
ALL registers are preserved. 

This is normally called through @BADRD, @BADWRT. · 

@SHOWWH 
Displays current Drive, Track, and Sector. 
Entry: (@DRIV) = current drive number 

DE= track sector 
Exit: "Drive x, Track xxx, Sector xxx." is displayed. 

ALL registers are preserved. 

LD 
CALL 
LD 
CALL 
CALL 
CALL 

A,l ;drive 1 
@SETDRV ;set it up 
DE,0 ;track 0, sector 0 
@READ ;read the sector 
NZ,@SHOWWH;displays drive, track, sector 
NZ,@SHOWST;displays error condition 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 29 

@SHOWLF 
Displays source of data. Use with @SHOW. 
If data from MEMORY, then addresses are displayed. 
If data from DISK, then drive, track, sector displayed. 
If data from FILE, then drive, track, sector, filename and 

relative sector in file are displayed. 

@MODTYPE 
Fifteen byte string of Modify Mode number bases 

("HEXDECBINOCTASC"), used by @SHOWLF to display current setting. 

@MODDRV 
Ascii string for "DRV" (Used by @SHOWLF). 

@MODMEM 
Ascii string for "MEM" (Used by @SHOWLF) • 

@MODTRK 
Ascii string for "TRK" (Used by @SHOWLF) • 

@MODTRU 
Ascii string for "TRU" {Used by @SHOWLF). 

@MODSEC 
Ascii string for "SEC II (Used by @SHOWLF) • 

@MODDAT 
Twelve byte string for the different data address marks used 

by @SHOWLF ("STDRPTDDTUDF") 

@MXDDE 
Ascii string for "ISD" {Used by @SHOWLF). 

@MODIFY 
Modify mode entry point (Call @SHOW first to display). 

@MODFIX 
Used by the flashing cursor routines in the modify mode to 

restore the 3 bytes being flashed to their normal setting. 
Entry: DE=> current buffer address 

IX=> current video location on HEX side of display. 
IY => current video location on ASCII side of display. 

Exit: Byte from {DE) is displayed to (IY), (IX), and {IX+l) 
Byte is adjusted first if encrypting is specified. 

@MODTBL 
Table of vectors to be used by the modify mode when keys are 

pressed. 

@BLKS 
Three bytes of 8FH (graphic blocts). Used as the cursor ON 

Character in the modify mode. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



30 Super Utility Plus 3.0 

@DECODE 
Get keyboard input, and set decoding parameters (normally 

entered through @MODIFY when@ is pressed) 

@UPDATE 
Entry point to update data when ENTER pressed in modify mode. 
If data is from disk, it will be written back. If data is from 

memory, it is already updated. 

@BDRDCLS 
.Clears the screen, calls @BADRD, clears the screen again and 

returns. A call is made here instead of @BADRD if the screen is 
filled with data, such as in Display Disk Sectors. 

@BDWTCLS 
Same as @BDRDCLS, except a call is made here for Write error. 

@BADRD 
Used after a disk Read error to display where the error 

occured, what type of error it was, and prompts for "Retry, Skip, 
Continuous, Nonstop, or Quit." 

Entry: A= error code 
DE= Track, Sector 
(@DRIV) = binary drive accessed 

If the CLEAR key is pressed, turn off NONSTOP and CONTINUOUS 
Exit: If QUIT is selected, program branches to 4018H and 

returns to last sub-menu. 
If SKIP is selected, B register (buffer pointer) is 
incremented, Z flag is set. 
If NONSTOP or CONTINUOUS is set, program returns with 
NZ flag set, and turn off prompting mode. If RETRY is 
selected, NZ flag is set. 

ROUTINE EQU 
LD 
CALL 
LD 
LD 
CALL 
CALL 
JR 

@BADWRT 

$ ;start of routine 
A,l ;use drive 1 
@SETDRV ;set it up 
DE,0 ;track 0, sector 0 
BC,@BUFFER;where to read it in 
@READ ;read a sector 
NZ,@BADRD ;if no good, go error 
NZ,ROUTINE;if RETRY, read again 

Same as @BADRD, except called after a bad Write operation. 
NOTE: @BADRD and @BADWRT can be DISABLED by inserting a C9H 

(RET opcode) into the first byte. Insert a 00H (NOP opcode) to 
ENABLE it. 

@INITBAD 
Turns off CONTINUOUS mode in @BADRD and @BADWRT. 
Entry: NONE 
Exit: A is destroyed 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

@INITBDl 
Turns off NONSTOP, and enables @BADRD and @BADWRT. 
Exit: A is destroyed 

@INITBD2 
Disables @BADRD and @BADWRT. 
Exit: A is destroyed 

@ADJBYTE 
Adjust a byte to the current DECRYPTING mode setting. 
(decrypting defined by setting @DISPl, @DISP2, and @DISP3) 
Entry: A= byte to be adjusted 
Exit: A= adjusted byte 

A' is destroyed 

@CKCONF 
Check for Dos specifier. 
Entry: HL => bytes to be interpreted. 
Exit: NZ = invalid selection, ALL registers preserved 

Z = selection OK, DCT updated to new dos 

@AASHOW 

LD 
CALL 
CALL 

A,0 
@SETDRV 
@CKCONF 

;use drive 0 
;set it up for use 
;get byte from @DTTBL 

31 

Saves current registers, forces prime registers, and call 
@SHOW to display a memory buffer. 

Entry: (@ADDRESS) = address to be displayed. 
Exit: BC, DE, HL, IX and IY are preserved 

@CKTRAKS 
Checks 
Entry: 
Exit: 

AF, and ALL alternate registers are used 

input string for track count specified. 
HL => input string 
If (HL) = and equal sign (=), then @VALUE is extracted 
from following bytes. 
If VALUE is OK (no carry), then it is inserted into 
the DCT table for the current drive. 

This routine is called normally through @FIGDRV. 

@SHOREAD (RST 28H) 
Displays "Reading Drive, Track, Sector", calls @READ. 
Entry: (@DRIVE) valid for current drive 

DE= Track/ Sector to read 
BC=> Buffer address 

Exit: Z flag is set 

If @READ is successful, then a RET is executed. If @READ is 
Bad, then a call to @BADRD is made., If SKIP is selected, the a 
call to @ADDCOUNT is made to bump an error counter. 

Copyright (c} 1982 by Breeze/QSD, Inc. 



32 

LOOP 

LD 
CALL 
LD 
LD 
CALL 
EQU 
LD 
CALL 
LD 
OR 
JR 
CALL 
RST 
DEFM 
DEFB 

Super Utility Plus 3.0 

A,0 ;select drive 0 
@SETDRV ;set it up 
HL,20 ;20 sectors to read 
DE,0 ;track 0, sector 0 
@INITCNT ;zero the error counter 
$ ;label LOOP 
BC,@BUFFER;where to load the data 
@MREAD ;multiple read routine 
A,H ;check for any more 
L ;set flags for HL 
NZ,LOOP ;some more left 
@SHOCNT ;display error counter 
8 ;display message 
'Errors.' 
0 

;message 
;terminator 

@SHOWRITE (RST 30H) 
Same as @READ, except @WRITE and @BADWRT are the vectors. 

@SHOVERF 
Same as @READ, except ''Verifying Drive, Track, Sector" is 

displayed. 

@SHOVERX 
Same as @SHOVERF, except a call is NOT made to @BADRD in the 

case of a disk error. Two attempts are made at a successful read. 
This routine is used when formatting a disk to detect bad 
sectors. 

@SHOFMT 
Displays "Formatting Track xxx", and writes track to disk. 
Entry: Mod I, (37EDH) = current track number 

Mod III, port (FlH) = current track number 
(@FMTBUFF) = address of format data 

Exit: Z = successful write operation 
NZ= bad, error message is displayed. 

@VERSEC 
Verify Disk Sectors entry point. 

@SHOACNT 
Displays Counter B. 

@SHOCNT 
Displays Counter A. 

@XCOUNT 
Counter A string. 

@XACOUNT 
Counter B string. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 33 

@INTACNT 
Zeros counter B. 

@INTCNT 
Zeros counter A. 

@ADDACNT 
Bumps counter B. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



34 Super Utility Plus 3.0 

@ADDCNT 
Bumps counter A. 

NOTE: The above counters may be used as follows: Counter A is 
normally used as a disk I/O error counter. When calling @SHOREAD, 
etc. @ADDCNT is called whenever a disk sector is skipped (bad.) 
Counter B is user definable. When calling the bump counter 
routines, ALL registers are preserved. When the counters are 
displayed, ALL registers are preserved, and the cursor is left 
with one space following the number. A linefeedddd displayed 
BEFORE the number. 

See @SHOREAD for an example of use. 

@GETCNT 
Prompts 
Entry: 
Exit: 

for "Sector Count?" 
(@DRIVE) is valid for current drive. 
HL = number of sectors specified. 
If no input is supplied (ENTER pressed 
will be loaded with the total number of 
diskette. 
A= L register (LSB of sector count) 

only), then HL 
sectors on the 

@CNTOTAL 
Computes the 

normally called 
total number of sectors 

through @GE'fCNT. 
on a disk. This is 

Exit: HL = 

@MVERIFY 

LD 
CALL 
CALL 

sector count on the diskette 

A, 0 
@SETDRV 
@CNTOTAL 

;use drive 0 
;set it up 
;compute total 

Multiple sector read routine. Same 
"Verifying" is displayed. 

@MREAD 

as @MREAD, except 

Multiple sector read routine. @SHOREAD is called to display 
the current sector being written. 

Entry: (@DRIVE) is valid for current drive 
DE= Track, Sector to begin 
HL = Number of sectors to read 

Exit: @ADDCNT called once for each sector SKIPPED if read 
error. 
HL = number of sectors remaining to be read. 

Top of memory is checked after each sector. Thus if more 
sectors are specified that can be held in memory, the routine 
will exit, and HL will contain the count of sectors remaining. 

See @SHOREAD for usage of this call. 

@MWRITE 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 35 

Multiple sector Write operation. Same as @MREAD, except 
sectors are written to the disk from memory. 

@COMSEC 
Compare Disk Sectors entry point. 

@COMPARE 
Compares two strings. 
Entry: HL => source string 

DE=> compare string 
B = length to compare 

Exit: Z = all bytes match 
HL => source string+ length 
DE=> compare string+ length 

B = 0 

NZ = mismatch 
HL => first mismatch source 
DE=> first mismatch compare 

B =#bytes remaining to compare 

@IFSAME 
Asks 

according 
Entry: 

if disk mounts are to be prompted, and sets 

Exit: 

@SMOUNT 
Prompts 
Entry: 
Exit: 

to keyboard input. 
NONE 
If NO is selected, (@MFLAG) = -1 
If YES is selected, (@MFLAG} = 0 

for source diskette to be mounted. 
NONE 
If (@MFLAG) = -1 (NO), nothing is done. 

@MFLAG 

If YES, then prompt is issued to mount SOURCE diskette 
on the current drive, and program waits for ENTER key. 

@DMOUNT 
Same as @SMOUNT, except DESTINATION disk is prompted for. 
NOTE: See @SSETUP and @DSETUP 

@DRVSAME 
Source 
Entry: 
Exit: 

@PAUSE 

and Destination drives are compared. 
(@SDRIVE) and (@DDRIVE) are valid. 
Z = same drives 

NZ= different 

Check for pause key. (spacebar) 
Entry: NONE 
Exit: If SHIFT SPACEBAR is pressed, wait till it is 

released. 
If SPACEBAR is pressed, wait till ENTER key is 
pressed. 
A is destroyed. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



36 Super Utility Plus 3.0 

@COPSEC 
Copy Disk Sectors entry point. 

@ZERSEC 
Zero Disk Sectors entry point. 

@WRITETR 
Writes 
Entry: 

Exit: 

track of data from memory to disk. 
BC=> buffer where track data is. 
(@DRIVE) is valid for selected drive. 
Head is over the correct track. 

Z = OK 
NZ = Bad, error code in A. (5 tries made) 

@DAMARKS 
Read Data Address Marks entry point. 

@BUFFEND 
Checks 
Entry: 
Exit: 

LOOP 

for buffer at top of memory. 
BC=> current buffer pointer 

Z = at top of memory 
NZ= more buffer left 

EQU $ ;label LOOP 
PUSH HL ;save counter 
RST 28H ;read a sector 
POP HL ;restore counter 
JR NZ,QUIT ;Quit if no good 
CALL @NEXSEC ;bump sector pointer 
DEC HL ;check for # sectors 
LD A,H ;check for any bits 
OR L 
RET z ;all sectors done 
CALL @BUFFEND ;any memory left? 
RET z ;done 
JR LOOP ;else 

@EXCSEC 
Exchange Disk Sectors entry point. 

@SECDATA 
Exchange Disk Sectors entry point. 

@GETBYTE 
Asks for "Relative Byte?". 
Entry: NONE 
Exit: L = relative byte 0-FFH 

BC, H, A are destroyed. 

@GETBCNT 
Asks for "Byte Count 
Entry: NONE 

? II . . 

for now 
go some more 

Copyright (c) 1982 by Breeze/QSD, Inc. 

completed 
on 



Technical Manual 

Exit: BC= byte count (defaults to 256 if ENTER pressed) 
A is destroyed, HL, DE are unchanged. 

@IFCLEAR 
Checks for CLEAR key being pressed. 
Entry: NONE 
Exit: C = key is pressed 

@SWAPDAM 

NC= key NOT pressed 
A is destroyed 

Exchange bytes in @DAMBUFF 
Entry: NONE 

37 

Exit: First 128 bytes in @DAMBUFF are exchanged with the 
Second 128 bytes. 

This routine is called by @EXCSEC to swap the contents of the 
Data Address Mark buffer. 

A is destroyed. 

@SSETUP 
Setup parameters for Source drive. 
Entry: (@SDRIVE) contain the current drive. 
Exit: (@DRIVE) and (@DRIV) are set for that drive. 

If (@MFLAG) is 0, then a prompt for SOURCE disk is 
issued. The disk status is then checked for ready via 
@STAT. 

@DSETUP 

z = drive is mounted and door- is closed. 
NZ= drive not mounted, and SKIP was selected. 

CALL 
CALL 
LD 
LD 
RST 
CALL 
DEC 
RST 

CALL 
RST 
DEFM 
DEFB 

@INITCNT ;clear the error counter 
@SSETUP ;set up for source drive 
DE,0 ;read track 0, sector 0 
BC,@BUFFER;where to read data 
28H ;read from disk 
@DSETUP ;setup for source drive 
B ;BC= @BUFFER now 
30H ;write same sector to 

@SHOCNT 
;drive 
;display error counter 
;display message 8 

'I/0 
0 

errors' ;message 
;terminator 

another 

Setup for Destination Drive. Same as @SSETUP except (@DDRIVE) 
is valid for drive to be used. 

@STRSER 
String Search through disk entry point. 

@MSTRSER 
String Search through memory ent~y point. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



38 Super Utility Plus 3.0 

@ASKSTR 
Asks for string for above 2 routines. 
Entry: NONE 
Exit: Input MUST be made, ENTER alone is not accepted. 

@ASKREPL 

If first characters are# or##, then the VALUE of the 
following numbers are inserted into the string. 
If @ is specified, then the resulting string is 
decrypted to whatever the current settings are. 
(Call is made via @ADJBYTE to encode the string.) 
B = length of resulting input string. 

HL => string 

Asks for Replacement String, in conjunction with the above. 
Entry: NONE 
Exit: If ENTER pressed alone, then bit 2 of @FLAGA is RESET. 

@REVSEC 

If input is supplied, then the string is interpreted 
in the same manner as @ASKSTRNG, and bit 2 of @FLAGA 
is SET. 

Reverse Disk Sectors entry point. 

@SWAP 
A single page of memory is reversed (256 bytes). 
Entry: HL => page of memory to be reversed. 
Exit: 256 byte block of memory is reversed. 

A and A' are destroyed. 

@SECSER 
Sector Search routine entry point. 

@IDMARKS 
Read ID Marks entry point. 

@IDTABLE 
Lookup table for responses to key input in @IDMARKS. 

@CKADDR 
Reads ID address marks from disk. 
Entry: (@DRIVE) is valid for drive 

Head is positioned over the desired track. 
Exit: NZ and NC means data is valid. 

@ONEDRIV 

NZ and C means disk error during ID read. 
Z means track is possibly not formatted, but no error 

· occured reading the ID 

One drive is prompted for, and @SETUP is set up. 
Entry: NONE 
Exit: If ENTER pressed alone, then drive 0 is defaulted. If 

input is supplied, then i~ is interpreted to setup the 

Copyright {c) 1982 by Breeze/QSD, Inc. 



Technical Manual 39 

drive number, dos specifier if supplied, and track 
count if supplied. 

@ACOMPAR 
Compares two strings, after being decrypted. 
Entry: DE=> source string. 

HL => dest string, to be decrypted. 
B = length to compare. 

Exit: Z = strings match 

A byte is taken from (DE), and a call is made to @ADJBYTE. 
Then, the resulting byte is compared to {HL) 

@QCOMPAR 
Compare 
Entry: 

Exit: 

two strings, pass over? symbols. 
HL => source string 
DE=> destination string 

B = number of bytes to compare 
z = all bytes match 

NZ= does not match 

If any? symbols are found in the source string {HL=>), then 
they are not compared. Thus, all? characters in the source 
string will match anything in the dest string. This is used with 
the String Search routines. 

@DISMEM 
Display Memory entry point. 

@DOADDR 
Display 
Ent.ry: 

memory pointed to by BC. 

Exit: 
BC= address to be displayed. 
(@ADDRESS) = (BC), and the data 
screen. 

is displayed to the 

@DISMTBL 
Lookup table for responses to Display Memory. 

@GETADDR 
Prompt 
Entry: 
Exit: 

@DOBUILD 

for "Address?". 
NONE 
BC= Input value 
If ENTER is pressed alone, then (@DEFADDR) 
the default value. 

Build Track to Memory entry point. 

@GETSES 
Prompt 

.Entry: 
Exit: 

for "Start, End, Start?". 
NONE 
(@TEMP0) = Start (default,= @PGMEND) 
(@TEMPl) = End (default= (@TOPMEM)-1) 

Copyright (c) 1982 by Breeze/QSD, Inc. 

is used as 



40 Super Utility Plus 3.0 

(@TEMP2) = Start (default= @PGMEND) 

@GETSE 
Prompt 
Entry: 

for "Start, End?". 

Exit: 

@MOVMEM 

NONE 
(@TEMP0) = Start (default= @PGMEND) 
(@TEMPl) = End (default= (@TOPMEM)-1) 

Move Memory entry point. 

@EXCMEM 
Exchange Memory entry point. 

@REVMEM 
Reverse Memory entry point. 

@JUMPMEM 
Jump to Memory entry point. 

@FILLMEM 
Fill Memory entry point. 

@COMMEM 
Compare Memory entry point. 

@TESTMEM 
Test Memory entry point. 

@INPORT 
Input Byte from Port entry point. 

@OUTPORT 
Output Byte to Port entry point. 

@MEM2SEC 
Memory to Sectors entry point. 

@SEC2MEM 
Sectors to Memory entry point. 

@WRBUILD 
Write Format Track entry point. 

@MEM2TRK 
Memory to Track entry point. 

@TRK2MEM 
Track to Memory entry point. 

@GETDT 
Prompt for "Drive, Track?". 
Entry: NONE 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

Exit: 

@SFMTW 

(@DRIVE) and (@DRIV) are set (0 is defaulted) 
D = Input Track (0 is defaulted) 

Standard Format Without Erase entry point. 

@SFMT 
Standard Format entry point. 

@GETDRVS 
Prompt 
Entry: 
Exit: 

@GETNMDT 
Prompt 
Entry: 
Exit: 

for "Drive (s) ?" 
NONE 
Input string is scanned for multiple drive inputs. 
Bit 5 of the corresponding DCT +5 byte is set 
activate the selected drive. 
String is handled. via @FIGDRV so parameters such 
Dos specifier and track counts may be interpreted. 

for Name, Date, and Password. (for formatting) 
NONE 
(@GATBUFF+D0H) = 8 byte name 
(@GATBUFF+D8H) = 8 byte date 
(@GATBUFF+CEH) = 2 byte encoded password. 

41 

to 

as 

If ENTER alone is pressed for the above, the corresponding 
positions are not changed. Call @INITGAT for initial set up. 

@INITGAT 
GAT table is initialized. 
Entry: (@DRIV) is valid to fetch Dos specifier. 
Exit: First the entire buffer (256 bytes) is filled with 

FFH (sector filled with 00H for TRSDOS III). Then,· 
starting at @DEFGAT, 21 bytes are moved into the GAT 
table starting at @GATBUFF+CBH. Then an 0DH is left at 
(@GATBUFF+E0H) 

NOTE: See @FILLGAT and @MAKEGAT. 

@DEFGAT 
Twenty-one bytes of GAT table initialization data. 
The bytes and their corresponding locations in the GAT: 

21H => @GATBUFF+CBH = 3.0 version number for SU+ 

@FMTNAME 

0000H => @GATBUFF+CCH = 2 bytes of 0 (used in DOS+, 
LDOS, DoubleDOS) 

42E0H => @GATBUFF+CEH = 2 byte encoded password 
(@FMTNAME) => @GATBUFF+D0H = 8 byte "disk name 
(@FMTDATE) => @GATBUFF+D8H = 8 byte disk date 

Eight byte string of the default name for Format. 

@FMTDATE 

Copyright (c) 1982 1by Breeze/QSD, Inc. 



42 Super Utility Plus 3.0 

Eight byte string of the default date for Format. 

@SPACES 
Thirty two spaces. (20H) 

@FORMIT 
Formats 
Entry: 

Exit: 

@STRTRK 

an entire disk. 
(@DRIVE) and (@DRIV) valid for drive to be used. 
(@STRTRK) is valid for track where formatting is to 
begin. 
(@FMTYPE) = 1 if format without erase 
(@IFVERF) = 0 if disk is to be verified, else 0 
If (@FMTYPE) = 2, then a RET will be executed after 
the disk is formatted without verifying. If anything 
else, the disk will be verified (if (@IFVERF) =0), 
then the BOOT and DIRECTORY will be written to the 
disk. 

Holds the number of the track where formatting is to begin. 

The user may format any number of tracks, anywhere on a disk • 
. For example, to format tracks 21-27 only, set the track count to 

28, and the starting track to 21 before calling @FORMIT. 

@FMTYPE 
Flag which identifies the calling vector to @FORMIT. 

0 = Standard format 
1 = Format without erase 
2 = Standard disk copy (returns after formatting) 

@IFVERF 
Flags if a verify is to be performed on a formatted disk. 
1 = skip verify phase, anything else will verify. 

If (@FMTYPE) = 2, then NO verify is attempted, even if 
(@IFVERF) indicates a verify. 

@BUILDTRK 
Build a format track in memory. 
Entry: (@DRIV) is valid for current drive (needed to fetch 

the correct dos specifier byte from @TYPEA table). 
(@FMTBUFF) is the address where the data is to be 
placed. 
Mod I, (@37EDH) = current track number. 
Mod III, (port FlH) = current track number. 

Exit: Data is stored in to memory buffer at specified 
address. 
AF, BC, DE, HL are used. 

@MOVEIN 
Takes a length and fill byte pointed to by DE, and fills into 

a memory buffer pointed to by HL. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

Entry: DE=> 2 bytes, length and fill byte 
HL => memory buffer address 

43 

Exit: Address pointed to by HL is filled with bytes 
specified by 2 byte table pointed to by HL 

. TABLE 

@FILL 

HL => next address 
DE=> next byte in table 

B = 0 
A= fill byte used 

LD 
LD 
CALL 
JP 
EQU 
DEFB 
DEFB 

DE,TABLE 
HL,@BUFFER 
@MOVEIN 
CONT 
$ 
33 
07 

;point to table 
;point to buffer 
;fill the buffer 
;continue here 
;table starts here 
;33 bytes to be filled 
;fill byte is 7 

Fills buffer pointed to by HL with B bytes of A. 
Entry: HL => buffer to be filled 

B = number of bytes to fill 
A= byte to fill with 

Exit: HL => next byte in buffer 
A= byte used for fill 
B = 0 

LD 
XOR 
LD 
CALL 

HL,@BUFFER 
A 
B,0 
@FILL 

;point to buffer 
;set Accumulator to 0 
;# bytes to fill 
;fill it up 

After this routine executes, HL = @BUFFER+l00h, and @BUFFER 
through @BUFFER+0FFH will be filled with 0's. 

@SORDER0 
Table of information used in formatting SINGLE DENSITY. 

@DORDER0 
Table of information used in formatting DOUBLE DENSITY (not 

TRSDOS Mod III) 

@DORDERl 
Table of information used in formatting DOUBLE DENSITY (for 

TRSDOS Mod I I I ) 

@DORDER2 
Table of information used in formatting DOUBLE DENSITY (for 

TRSDOS Mod I double den only) 

NOTE: The above 4 tables contain the following information. 
+0 = number of sectors on a track 
+1+2 = address of table ot the order of the sectors on 

a track 

Copyright (c) 1982 by Breeze/QSD, Inc. 



44 Super Utility Plus 3.0 

+3+4 = post-index gap length, fill byte 
+5+6 = pre ID sync field 
+7+8 = pre ID sync field 
+9+10 = gap between ID and DATA fields 
+11+12 = pre DATA sync field 
+13+14 = pre DATA sync field 
+15+16 = post DATA gap length, fill byte 

@ORDERS 
Ten byte table of the order that sectors are to appear on a 

track when it is formatted. 

@ORDERD0 
Eighteen byte table of the order sectors appear on a double 

density (non-TRSDOS III) track. 

@ORDERDl/2 
Eighteen byte table of the order sectors appear on a double 

density TRSDOS Mod IDD/III track. 

NOTE: The sectors on a track are not in sequential order for 
minimum read times. If you examine the tables, you will see that 
a track can be read in 2 revolutions on single density and 3 
revolutions on double density. 

See @ORDNEW for sector skewing information. 

@HASDATA 
Before a disk is formatted, an attempt 

0, sector 0 (sector 1 on TRSIII). If it 
is made here. An attempt is made to read 
NOT readable, an appropriate message is 
readable, the directory name and date will 
is then prompted to Continue or Quit. If 
an exit is made to 4018H to return to the 
RET is executed. 

@CODE 

is made to read track 
is readable then a call 
the directory. If it is 
displayed. If it IS 
be displayed. The user 
quit is selected, then 
last sub-menu, else a 

Codes an ASCII string into a two byte password. 
Entry: HL => input string to be encoded. 

B = length of the input. 
(@TYPEA) bit 3 defines which encoding scheme to be 
used (Mod III TRSDOS or all others). 

Exit: HL = 2 bytes password 
AF, BC, DE are destroyed 

NOTE: All operating systems use the same encoding scheme 
except TRSDOS III. 

@GET10 
If format without erase is selected, then a call is made here 

before formatting each track to read a full track of data into a 
memory buffer. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 45 

@PUT10 
If format without erase is selected, then a call is made 

after each track is formatted to write the previously found 
back on the track. 

here 
data 

These 2 calls are normally made through @FORMIT. 

@ORDNEW 
Shifts the current sector order table for sector skewing. If 

single density, 3 rotations are performed, else 4. 

In order to make a disk readable in the fastest manner, it is 
important to consider the step time involved from track to track. 
A single turn of the disk takes 200 ms. At a 40 ms step rate 
(slowest), 1/5 of the disk will turn by before the step command 
has completed. If the sectors appear in the same order on every 
track, then the remaining 4/5 revolution must be made to come 
back around to the first sector on the next track. Using the 
technique applied here, the first sector on each successive track 
will be located 3/8 of a revolution ahead of the last track, so 
that when the step command has completed, the first sector will 
be positioned properly. 

@NSBOOT 
NON-SYSTEM boot that is written to a disk during the format 

process. If the disk is booted on drive 0, ·then a message 
informing the user that the diskette does not contain a system 
is displayed, and the program halts. 

@BOOTENT 
Directory entry for BOOT/SYS, applied during format. 

@DIRENT 
Directory entry for DIR/SYS, applied during format. 

@SFMT3 
Normal exit address for format 

copy is requested. If NO, then 
return, if YES, then another copy 

@LOKIT 

and backup 
an exit to 
is made. 

to ask if another 
4018H is made to 

Locks out current granule when error detected during verify 
phase on disk formatting. 

Entry: DE= track/sector 
Exit: GAT table located at @GATBUFF is updated to reflect 

the locked out granule. 
DE= first sector AFTER the current granule. 

@FILLGAT 
Prepares a GAT table in memory. 
Entry: HL => 256 byte buffer 
Exit: All bytes to relative byte CDH are affected. 

Bytes CEH - FFH are uncharged. 
Complete GAT and Allocation tables are constructed. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



46 Super Utility Plus 3.0 

All tracks are marked as available. 
BC destroyed. 

@RELTKS 
Computes the RELATIVE track count of a diskette. 
Entry: NONE 
Exit: DCT+0 = relative track count of diskette. 

NOTE: The TRUE and RELATIVE track counts for a diskette are 
always the same EXCEPT with DoubleDOS and ND80. The RELATIVE 
track count is computed as DISK RELATIVE SECTORS. 

If the TRUE track count is desired (such as when formatting) 
then a call to @GETTKS should be made. The RELATIVE track count 
is needed when stepping through a disk via sector read/writes. 

@LOKGRAN 
Performs the actual GAT table track lockout. 
Entry: DE= current track/sector 
Exit: The granule pointed to by DE is locked out on the GAT 

table located at @GATBUFF. 
A is destroyed. 

@NEXGRAN 
Advances DE to the first sector in the following granule. 
Entry: DE= track/sector 
Exit: DE= first sector in next gran. 

Bis destroyed. 

@BULKGO 
A call here will completely bulk erase a disk. 
Entry: (@DRIV) valid for desired drive. 
Exit: Z = OK 

NZ = not completed. 

NOTE: This routine can be fatal to a diskette! 
A stream of 0's are written to every track on the diskette to 

erase all data! 

@BLKERAS 
Diskette bulk erase entry point. 

@UFMT 
Special format utility entry point. 

@RANDOM 
Compute 
Entry: 
Exit: 

@SPATTERN 

a pseudo-random number. 
NONE 
A= pseudo-random number from 0-255 inclusive. 

DATA pattern 
string, and is 
sector in S/D. 

to be used in single density. This is a 16 byte 
duplicated 16 times when formatting a 256 byte 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 47 

@DPATTERN 
DATA pattern 

is duplicated 
formatting. 

to be used in double density. This 16 byte string 
16 times to fill 256 bytes of data during 

NOTE: SU+ comes initialized with ESH for single density, and 
6DB6H for double density. These have proven to be worst case 
patterns, and will result in a maximum number of formatting 
failures. The logic behind this is that a marginal disk should be 
revealed during the format process than after valued data is on 
the disk. 

@CLRBUFF 
Zeroes 
Entry: 
Exit: 

out a format buffer prior to building the track data. 
(@FMTBUFF) = format buffer to be used. 
2000H bytes of 0~s written to the indicated buffer. 
DE and BC are destroyed, HL is preserved. 

NOTE: It is good practice to clear out a format buffer prior 
to building the track data. If a short track is prepared and 
there is any extraneous data after the buffer, it too will be 
written to the disk and possibly picked up by the FDC during a 
sector read operation. 

@COMPCOD 
Computes the difference in password encoding between TRSQOS 

III and all others. This routine is called by @CODE. All DOS's 
use a common password encoding scheme for compatibility EXCEPT 
TRSDOS III. The coding method is identical except for 2 bytes. 
@CODE calls @COMPCODE to execute the proper 2 byte instruction. 

@NAMEDAT 
Displays disk name and date. 
Entry: @GATBUFF + D0H-DFH hold the current name/date. 
Exit: Name and Date are displayed on the video. 

The name and date are checked prior to displaying. If any 
bytes are less than 20H (control codes), then the data is 
considered non-standard and a message "Invalid Name/Date Data" is 
displayed. 

@WHERDIR 
Computes the directory location on a disk. This routine is 

called by @RDDIR. If the disk is specified as DoubleDOS, then 
track 17 is returned (DoubleDOS.MUST have directory on 17). Else 
track 0, sector 0 (sec~or 1 Mod III disks) is read. The 3'rd byte 
(2'nd byte TRSDOS III) is fetched as the location of the 
directory. 

The resulting byte is checked and must be from 1-191 to 
indicate the real range of allowed directory tracks. If the byte 
is outside this range, then 17 is re~urned. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



48 

@RDDIR 
Read a 
Entry: 
Exit: 

directory into memory. 
(@DRIV} valid for desired drive. 
Directory is read into memory. 

Super Utility Plus 3.0 

C = read error, or invalid sector count. 
Z = no sectors read into memory. 
NZ and NC= successful. 
(@DIRSCNT) = sector count of the directory. 
DATA starts at @GATBUFF 

First, the track indicated by the current table setting at 
@DIRTRK is read in. If it is a read protected sector (NON-read 
protected TRSDOS III}, then the read continues. If not valid, a 
call is made to @WHEREDIR to determine the location of the 
directbry, and the table is updated. 

If the new track does not meet the read-protect status, an 
error return is made. 

Successful sectors are read in until the end of the track is 
reached. If single density or ND80 DD is set, then sectors reads 
are continued until the first non read-protected sector is found. 
This is so that SU+ can read in extended directories created by 
ND80 in either single or double density. 

@WRDIR 
Writes 
Entry: 

Exit: 

@SHOWDIR 

the last directory read in back to the disk. 
(@DIRTRK) holds the current directory track. 
(@DRIV} = current drive number. 
(@DIRCOUNT} = number of sectors to be written. 
@GATBUFF = starting address of data. 

Z = OK 
NZ = Error 

Full screen display of a directory block. 
Entry: Directory data begins at @GATBUFF 

(@DIRPAGE} holds starting sector -2. 
Exit: All files in 8 continuous sectors are displayed. 

There is only room on the screen to display 64 files at the 
same time. Since double density disks and those with extended 
directories can hold quite a few more, a block of 8 sectors is 
displayed at a time. usually (@DIRPAGE} is advanced by 8 sectors 
at a time. 

@SHOWIT 
Displays a single filename to the video. 
Entry: IX=> first byte of directory entry 

HL = video address where to display 
Exit: z = filespec OK 

NZ = invalid filespec, not displayed 

This is a useful call 
contains a valid entry. 

to determine if a directory entry 
Load HL with 0 if you want to determine 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

the entry status, but not display the name. 
display a killed file also. 

@DSKDIR 
Display Disk Directory Entry Point. 

@DIRPART 

49 

This call will 

Displays disk name, date, free grans, free files. 
Entry: Directory must already be in memory 
Exit: Diskette data displayed to video. 

@GETGCNT 
Computes number of free granules from GAT table. 
Entry: HL => GAT table 

B = diskette track count 
A= D4H if OFF bits to be counted 

= DCH if ON bits to be counted 
Exit: DE= sum of counted bits 

(@FREEG) = (DE) 

@CHDNAME 
Change disk name entry point. 

@PUTNMDT 
Writes GAT table to a disk. 

@ZUNUSE 
Zero unused directory entries entry point. 

@DIRLIST 
Displays a directory. Indicates if a file is Invisible, 

System, and the Protection Level setting. 

@ALINE 
Line counter routine to prevent scrolling. 
Whenever a long listing is being presented 

screen, a call to @ALINE should be made with each 
program will pause when the screen is filled and 
ENTER key. 

@MODDIR 

to the video 
linefeed. The 
wait for the 

Entry point to 
directory is read 
individually. 

the full screen 'purge/restore' utility. A 
into memory, and the files are killed/restored 

@MODKILL 
Subroutine to kill a file from @MODDIR. 
Entry: IX=> directory entry of file to be killed. 
Exit: File is killed, and screen is re-draw via @SHOWDIR. 

@PUTBKDR 
Prompts if directory is to be wri~ten back. 
Entry: NONE 

Copyright (c) 1982 by Breeze/QSD, Inc. 



50 Super Utility Plus 3.0 

Exit: Screen is cleared, and user prompted if directory is 
to be written back. If yes, a call to @WRDIR is made, else a RET 
is executed. 

@KILLIT 
Kills a 
Entry: 
Exit: 

file from a directory. 
IX=> first byte of directory entry 
File is killed. 

NOTE: This routine will only reset bit 4 of all active primary 
and extended entries. The grans are not released. A call to 
@MAKEGAT will free up the allocated grans. 

@KILLW 
This address holds the address of the beginning of the buffer 

area where the filenames reside. @KILLIT uses this address to 
compute the location of an extended directory entry. 

@RESCUE 
Same as @KILLIT, except the file is restored. 

@CLRFILE 
Zeroes out all non-active directory entries. Directory must 

already be in memory. 

@ZERFILE 
Zero out a single directory entry. 
Entry: IX=> beginning of directory entry. 
Exit: All bytes CQntained in the specified entry are set to 

0. 

@RSYST 
Remove system files entry point. 

@ENTRIES 
Computes the number of directory entries in the current 

directory in memory. 
Entry: NONE 
Exit: E = number of directory entries. 

HL, BC are destroyed. 

@RPASSW 
Remove passwords entry point. 

@CLEARF 
Zeros out a single directory entry. 
Entry: IX=> first byte of directory entry 
Exit: Primary and all extensions belonging to the specified 

file are zeroed. 

@MAKEGAT 
Construct a GAT table. 
Entry: Directory located in memory starting at @GATBUFF. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 51 

Exit: Complete GAT table reconstructed. 

This routine will first make a call to @FIGTRAKS to establish 
the current track count of the diskette. If you wish to 
reconstruct the directory with a different track count, make the 
call to @MAKEGAT+3. All files in the directory are allocated. 

@ALLOCAT 
Allocates grans belonging to current file. 
Entry: IX=> directory entry 
Exit: All grans associated with this entry are allocated. 

LOOP 

@TOPGRAN 

Only the current entry is operated on, extensions (if 
any) are ignored. 

CALL 
CALL 
CALL 

CALL 
CALL 

LD 
EQU 
BIT 
CALL 
CALL 
DEC 
LD 
OR 
JR 

@ONEDRIV 
@RDDIR 
@DIRPART 

@INITGAT 
@ENTRIES 

IX,@FILBUFF 
$ 
4, ( IX) 
NZ,@ALLOCATE 
IXDIR 
DE 
A,D 
E 
NZ,LOOP 

;ask for a drive 
;read the directory 
;display name, date, 
;free space 
;clear out GAT table 
;~ompute number of 
;entries 
;start of filenames 
;where to loop 
;active entry? 
;allocate this entry 
;point to next entry 
;reduce counter 

;any bits left? 
;continue if not done 

Computes highest bit position for usuable grans. 
Entry: NONE 
Exit: A' = bit set for highest gran on track. 

@MAKEHIT 
Completely rebuilds HIT table starting at @GATBUFF+l00H. 
The entire table is zeroed out and re-constructed from 

scratch. On TRSDOS III, the last 32 bytes in the sector are not 
affected as this is the system file allocation table. 

@HASH 
Compute 
Entry: 
Exit: 

@PUTHIT 

HASH code for a filename. 
IX=> first byte in directory record. 
A= hash code byte. 
All otner registers preserved. 

Insert HIT byte into table. 
Entry: IX=> directory record. 

HIT table starts at @GATBUFF+l00H. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



52 

Exit: 

@DSKFREE 

Super Utility Plus 3.0 

All corresponding HIT bytes for the associated files 
are inserted into the table. File extensions if any 
are taken care of also. 

Free Grans routine entry point. 
All 4 drives are scanned, and if a directory is found, the 

name, date, and free grans/files are displayed. 

@KILLCAT 
Kill Files by Category entry point. 

@FIGTKS 
Computes the track count of a diskette from the GAT table. 

NOTE: If ND80 or TRS III is indicated, the track count cannot 
be interpreted from the GAT table and must be entered explicitly. 
If DoubleDOS, the track count byte is @GATBUFF+CDH. If LDOS, 
track count is at @GATBUFF+CCH minus 35. If none of the above, 
the LOCKOUT table is scanned backwards for the first non-locked 
out track. This is then assumed to be the track count of the 
diskette. 

A call is usually made here after a directory has been read in 
to establish the actual track count in case it is different than 
the last one read. 

@COMPDIR 
Compute 
Entry: 
Exit: 

@COMPDAT 

the correct command to write a directory sector. 
(@DRIV) = drive to be written to. 
A= command for FDC 

Compute the correct command to write a data sector. 
Entry/Exit: Same as @COMPDIR 

There are several different ways that the floppy disk 
controller (FDC) can mark sector data .on a disk. Normally, the 
data and the directory are written with different data address 
marks (DAM) to help identify that a directory is actually read 
in. Normally, the data is written as STANDARD, and the directory 
as READ PROTECTED. This doesn't mean that it can't be read, but 
is simply a bit on the disk that can be identified. 

TRSDOS Mod III has the marks BACKWARDS. That is, DATA sectors 
are read protected, and the directory is standard. Making a call 
to @COMPDIR and @COMPDAT assures that the correct write command 
will be issued to the FDC. 

@CHFILE 
Change file parameters entry point. 

@BCDIR 
Loads BC with displacement between filenames. 
Entry: (@DRIV) = current drive 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

Exit: 

@IXDIR 

BC= 30H for TRSDOS III 
BC= 20H for all others. 

Advances IX pointer to next directory record. 

@HLDIR 
Advances HL pointer to next directory record. 

@IXDIRB 
Moves IX pointer BACKWARD to next directory record. 

53 

The directory is normally arranged with each record being 32 
bytes long, and 8 per sector. On TRSDOS III, the directory 
records are 48 bytes long, and 5 per sector. The last 16 bytes in 
each sector is unused. Calls to the above will move the pointer 
correctly to the next file record. 

CALL 
CALL 
JP 
CALL 
CALL 

LD 
LOOP EQU 

BIT 
CALL 
CALL 
DEC 
LD 
OR 
JR 
CALL 
RST 
DB 
JP 

@RPDIR 

@ONEDRIV 
@RDDIR 
NZ,4018H 
@INITCNT 
@GET ENTRY 

HL,@FILBUFF 
$ 
4, ( HL) 
NZ,@ADDCNT 
@HLDIR 
DE 
A,D 
E 
NZ,LOOP 
@SHOCNT 
8 
'Active Records.',0 
@GOBACK 

Read Protect Directory entry point. 

@URPDIR 
Un-Read Protect Directory entry point. 

@REPGAT 
Repair GAT table entry point. 

@REPHIT 
Repair HIT table entry point. 

@REPBOOT 
Repair BOOT sector entry point. 

;ask for a drive 
;read the directory 
; last sub-menu 
;zero the counter 
;compute number of 
;directory records 
;start of filenames 
;loop label 
;active record? 
;bump counter if active 
;point to next record 
; reduce counter 

;any bits left? 
;do the rest 
;display the counter 
;display message 

;press <ENTER> 
;continue 

to 

Copyright (c) 1982 by Breeze/QSD, Inc. 



54 Super Utility Plus 3.0 

@REPCOMM 
Execute common subroutine for all activated drives. 
Entry: HL = subroutine address. 
Exit: branch to @GOBACK made when all drives completed. 

@GATREP 
Code to repair GAT table. Vector from @REPGAT via @REPCOMM. 

@HITREP 
Code to repair HIT table for each drive selected via @REPCOMM. 

@BOOTREP 
Code to repair BOOT sector for selected drives via @REPCOMM. 

@ZUNGRANS 
Zero Unused Granules entry point. 

@ZEGRAN 
Zeroes 
Entry: 
Exit: 

@GRNSIZE 
Compute 
Entry: 
Exit: 

current granule DE points to. 
DE= curreni track/sector 
Gran containing sector pointed 

Z = OK 
NZ= Error, code in A. 

number of sectors per granule. 
(@DRIV) = current drive 
B =#sectors per gran. 

to by DE is zeroed. 

A is destroyed (= byte from @TYPEA) 

@NEXGRAN 
Advances DE to start of next granule. 
Entry: DE= current track/sector. 
Exit: DE= starting sector of following granule. 

@CHKDIR 
Check Directory Entry Point. 

@MOVEDIR 
Move Directory entry point. 

@MNYGRNS 
Returns a mask byte in E. Off bits indicate a gran is 

available in the current operating system. 
Entry: NONE 
Exit: E = mask byte, set bits cannot be used as a gran. 

@SCOPY 
Standard Disk Copy entry point. 

@ASKFMT 
Prompt if destination disks are to be formatted. 

Copyright {c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

Entry: NONE 
Exit: (@IFBFMT) = l = YES, format 

(@IFBFMT) = 0 = NO, don't format 

@REMDRIV 
Removes the current drive from the active table. 
Entry: (@DRIVE) = current drive 

55 

Exit: Bit 3 of the corresponding @TYPEB table is reset. 

@UPDIRX 
Updates 

(@TRACKS), 
Entry: 

GAT table in memory to track count specified by 
and then updates to the current disk. 
Directory in memory starting at @GATBUFF 

Exit: GAT table re-created to the track count indicated by 
(@TRACKS), and is then written back to disk. 

This is the normal exit for Format Without Erase, and Standard 
Backup to unlike track counts. If a 40 track diskette is copied 
to an 80 track formatted disk, the additional 40 tracks are 
opened up and made available to the users operating system. 

@UCOPY 
Special Disk Copy entry point. 

@SHOMNY 
Used by special disk copy. This call displays the current new 

data when scanning a disk prior to the copy. 

@GOCOPY 
This routine will format a non-standard disk. 
The disk must already have been pre-scanned, and the 

data must have been created starting at @DAMBUFF. 
The format of the table to copy special disks is as 
Each track has the following format for the number 

indicated by (@TRACKS). 
First byte=# single density sectors 
Second byte=# double density sectors 
Then follows 6 bytes for each sector on the track. 
First byte= Track Number. 
Second byte= Head Number. 
Third byte= Sector Number. 
Fourth byte= Sector length. 
Fifth byte= result of sector being read in. 

table of 

follows: 
of tracks 

NOTE: The fifth byte for each sector is used to determine the 
AM status of a sector. False sectors cannot be duplicated. 

@PERCOPY 
Transfers a full non-standard disk a sector at a time. Uses 

the table built via special copy to determine the sectors to be 
transferred. A call to @GOCOPY is made prior to @PERCOPY to 
format the disk first. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



56 Super Utility Plus 3.0 

@COMPASS 
Encode/Decode Password entry point. 

@FIGPASS 
Computes a password. 
Entry: DE= password 
Exit: 8 byte asc11 

password. 

@DRVSTAT 

to be computed. 
string displayed 

Drive Status entry point. 

@DRVCHK 

showing 

Display's the status for a single disk drive. 
Entry: (@DRIV) = cur rent drive 

a working 

Exit: Message displayed if disk is mounted, empty, etc. 

@FILEMAP 
Disk Allocation entry point. 

@FILETOT 
Displays relative data found in a files directory entry. 
Entry: IX=> first byte of a directory iecord. 
Exit: Filename, Track, Sector, Byte and DEC of the current 

record. 

@FILMORE 
Displays relative data found in a directory record. 
Eritry: IX=> directory record. 
Exit: End of file sector (EOFS), End 

Logical record length (LRL), 
grans, and all extents belonging 
displayed. 

@SHOEXTS 

of file byte (EOFB), 
encoded passwords, # 
to a directory record 

If a directory record has an extended entry, a call here will 
display the data located in it. 

@DISFILE 
Display File Sector entry point. 

@BADFILE 
Displays 'Invalid Filespec.' message. 

@NOFILE 
Displays 'File Not Found' message. 

@SHOWFL 
Displays a files sectors data on the video screen. Filename 

and relative sector are indicated. 

@DISFTBL 

Copyright (c} 1982 by Breeze/QSDr Inc. 



Technical Manual 57 

Lookup table used in response to keys pressed in display file 
sectors. 

@CKASCI 
Checks to see if a character is a valid filename character. 
Entry: A= character to be checked. 
Exit: C = invalid character 

NZ= OK 

@MOVFILE 
Takes an ascii filename string, and moves it into the file 

device control block (DCB). 
Entry: HL => ascii filename. 
Exit: C = invalid filespec 

NC= OK. 
If OK, filename is moved to @FILEDCB in the same configuration 

as it would be found in the directory, i.e., an eight byte 
filename padded with blanks followed by the 3 byte extension 
padded with blanks. If a password was specified, it is moved to 
@PASSWORD, although it is never checked for validity. 

If a drive was specified, (@DRIVE) and (@DRIV) will be 
updated, and (@SCANFLAG) will be set to 1 to disable a drive 
search. If a drive is NOT specified, (@SCANFLG) is set to 0 to 
enable a drive search~ 

@FNDFILE 
Locates 
Entry: 
Exit: 

a filespec in a directory. 
Filename must have been pre-moved to @FILEDCB 

C = file not found 
NC= file found. 

If found, directory will be in memory and IX will point to the 
directory record. 

BEGIN 

@RELSEC 

EQU 
CALL 
CALL 
CALL 
JR 
CALL 
CALL 
JR 
LD 
CALL 

$ 
ASKFILE ;ask for filename from keyboard 
@MOVFILE ;move to DCB 
C,@BADFILE;invalid filespec 
C,BEGIN ;ask again 
@FNDFILE ;locate the file 
C,@NOFILE ;file not found 
C,BEGIN ;ask for another 
HL, (@CURSOR) ;get current cursor position 
@SHOWIT ;display the name 

Displays EOF sector and EOA sector for a file. 
Entry: IX=> directory record 
Exit: EOF and EOA displayed to video. 

@POSIT 
Position to a relative sector in a file. 
Entry: (@TEMP9) = sector to position to 

IX=> first byte in directory record. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



58 Super Utility Plus 3.0 

DE = address of first directory record 

Exit: 
{@GATBUFF+200H). 

C = sector is beyond file limits 
NC= OK 
DE= track, sector of requested position in file. 

@POSITBC 
Position to relative file sector. 
Entry/Exit: Same as @POSIT, except relative sector is 

supplied in BC register instead of {@TEMP9). 

@GRNSIZE 
Compute 
Entry: 
Exit: 

@FSECTOR 

# of sectors in a granule. 
{@DRIV) = current drive 
A=# sectors per granule. 

Sector Allocation entry point. 

@WRLNO 
Converts a 2 byte hex number to decimal ascii. 
Entry: HL = 2 byte word in HEX 

IY => 5 bytes where string is to be written. 
Exit: 5 byte ascii string written to (IY) 

DE destroyed 

LD 
LD 

HL, {@TEMP9) 
IY, {@CURSOR) 

;fetch a number 
;write to current cursor 
;location 

CALL @WRLNO . ;ascii string displayed 
;on video 

@OFSFILE 
Offset Disk File entry point. 

@SHOWOFF 
Displays module load range and entry point. 

@OFFSETFL to display the current setting. 

@ASKFILE 
Prompts for a filespec to be entered from keyboard. 

@CLEARF 
Clear File Sector entry point. 

@COPFILE 
Copy Files entry point. 

@IFCOPY 
Displays a filename and asks if it is to be copied. 
Entry: IX=> file directory record. 
Exit: If YES selected, nothing ,is done. 

Called by 

If NO selected, the file is killed from the directory 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 59 

in memory. 

@PERCOPY 
Performs the copy of files after they have all been selected. 

@ALL000 
Allocates all granules of a file. 
Entry: IY => first byte in filename. 

Directory begins at @GATBUFF. 
Exit: All grans ·assigned to the file are allocated. 

@NEXEXT 

Extensions are allocated also. 
IY unchanged, BC, HL destroyed. 

Called by @ALLO00 to create a file extension if more directory 
records are needed. 

Entry: IY => first byte of existing directory record. 
Directory must start at @GATBUFF 

Exit: Extension is created. 
IY => first byte of extension. 
All links forward and backward are maintained. 

@COMFILE 
Compare Files entry point. 

@CHUNK 
Allocate granules to a file. 
Entry: Directory begins at @GATBUFF 

HL = total number of grans needed. 
Exit: C = number of continuous grans (1 directory extent) 

DE destroyed. 
Carry= directory full (all grans allocated) 

@FNDSPOT 
Locates 
Entry: 

Exit: 

@EXECOPY 

an empty directory record. 
Directory at @GATBUFF 
(@FNDSPOT+l,+2) = J available records 
(result of a call to @ENTRIES) 
HL => empty directory record. 

Z = OK 
NZ = no more records available 

in directory 

Called by @COPFILE. Performs the allocation of a file. 

@CREATFIL 
Build File entry point. 

@DALLOC 
Disk Allocation entry point. 

@CMPGRNS 
Computes the number of grans in a file. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



60 Super Utility Plus 3.0 

Entry: IX=> directory record 
Exit: C =#of grans assigned to a file 

@DSPGRNS 
Computes and displays the number of grans in a file. 
Entry: IX=> directory record 
Exit: "xxx Grans." displayed. 

NOTE: A call is made to @CMPGRNS from this routine. 

@CMPHASH 
· Compute Hash Code entry point. 

@COMPADD 
Adjust 
Entry: 
Exit: 

the number of grans found in a directory record. 
A= number of grans read from a directory record. 
A= actual number of grans in the record. 

LD 
AND 
CALL 

A,(IX+23) ;fetch# of grans/start gran 
lFH ;mask the number of grans 
@COMPADD ;adjust to real number 

' On all DOS's except TRSIII, the right 5 bits= the number of 
continuous grans in a record -1. In TRSIII, the number is actual, 
and not -1. If the TRSIII bit in @TYPEA is set, then the number 
is NOT adjusted, otherwise it is incremented by one. 

@CTAPE 
Copy Tape entry point. 

@BYTEIN 
Reads one byte from tape. 
Entry: Tape is running 
Exit: A= byte input from tape. 

@BITIN 
Called by @TAPEIN 8 times to read one byte. 

@BYTEOUT 
Writes 
Entry: 

Exit: 

@BITOUT 

one byte to tape. 
Tape deck on. 
A= byte to write. 
C = <clear> key pressed. 

Called by @TAPEOUT 8 times to write one byte. 

@ASKDECK 
Asks which deck is to be used (1 or 2), then prompts to press 

<enter> when tape is prepared. 

NOTE: The Mod III has only one d~ck, and therefore the deck 
prompt is skipped, and <enter> is prompted for. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 61 

@TPROMPT 
Prompts to press <enter> to begin. When enter is pressed, 

message press <clear> to terminate is displayed. 

@TAPEINT 
Sets up 
Entry: 
Exit: 

@FNDSYNC 

parameters used by tape input/output. 
NONE 
HL = 3840H (for <break> <clear> key checks) 
DE= @DAMBUFF (where data is read from/ written to 
IY = 3C00H+896 (for data display on video) 
HL' = 0 
DE' = 0 

A = 0 

Displays "looking for sync", and jumps to @TAPELDR. 

@TAPELDR 
Turns on tape deck, and reads leader and sync byte. 

@TAPSHOW 
Displays data read from/ written to tape. 
Entry: HL' = checksum 

DE' = byte counter 
A = input/output byte 
IY => current video display location. 

Exit: Byte counter is displayed. 
Video is updated to reflect the new data. 
Checksum and Byte counter are updated with new data. 

@RTAPE 
Read Tape entry point. 

@VTAPE 
Verify Tape entry point. 

@WTAPE 
Write Tape entry point. 

@PUTSYNC 
Turns on tape deck, and writes leader and sync byte. 

@BOOTlS 
Boot written for Mod I to boot TRSDOS 

@BOOTlD 
Boot written for Mod I DD to boot TRSDOS 

@BOOT3 
Boot written for Mod III to boot TRSDOS 

Copyright (c) 1982 by Breeze/QSD, Inc. 



62 Super Utility Plus 3.0 

The above 3 boots are used in the 'repair boot sector' in the 
disk repair utilities. 

@PGMEND 
Last byte in the program plus one. 
This represents the first available byte for buffer use. 

@PRBUFF 
1024 byte buffer used for printer spooler l/0. 

When a call is made to @POUT to send a byte to the printer it 
is actually saved in this buffer. The interrupt service (@TASK) 
will take a byte out of this FIFO buffer and send it to the 
printer. This limits the speed of the printer to 40 cps (25 ms 
interrupts), and slows down a fast printer, but it does free up 
the CPU to perform other tasks instead of dedicated printing. 

@DAMBUFF 
Data Address Mark buffer. 
When several 

to @MREAD, the 
contiguously in 
out to disk they 

@GATBUFF 

sectors are read into memory, such as via a call 
data address marks for each sector are saved 
this buffer so that when they are written back 
will be marked correctly. 

Normal buffer area used to read in a directory. 
The number of sectors in the directory can be fetched from 

@DIRCOUNT. 

@BUFFER 
A buffer starting 256 bytes past @GATBUFF. 
This buffer points at a HIT table in memory. 

@FBUFF 
Normally used as the starting address of a format buffer. 
When a disk is formatted, every byte is prepared ahead of time 

starting at this address, and is written to a disk with a write 
track command. This address is high enough so that a full track 
of sectors can be held below it. 

This is how the format without erase works. It first reads 
all sectors on a track starting at @GATBUFF, and the data address 
marks are stored at @DAMBUFF. The track is prepared starting at 
@FBUFF, and written to disk. Then the tracks data starting at 
@GATBUFF is written back to the track a sector at a time. 

@ENTRY 
The normal entry point to the initialization code of SU+. 
This address is PAST the program end, and all the memory used 

by the initialization code is reclaimed as buffer area after the 
code is run one time. This will set up the interrupt service, 
print the program labels, and read the configuration data from 
the disk. Once the program is runnjng, 2 alternate entry points 

Copyright (c) 1982 by Breeze/QSD, Inc. 1 



Technical Manual 63 

are available: 4015H branches back to the Master Menu. 4018H 
branches back to the last sub-menu viewed. 

The ONLY memory NEVER used by SU+ is from @PGMEND to 
@PRBUFF-1. This represents the uneven block of memory from the 
last byte of the program to the next even page of memory. If the 
user desires, @TOPMEM may be reduced by even pages of memory if 
more is needed. 

Copyright (c) 1982 by Breeze/QSD, Inc. 



64 

;compute the 
START RST 

DB 
DB 
DB 
DB 
CALL 
CALL 
JP 
CALL 
CALL 
LD 

LOOP BIT 
CALL 
CALL 
DEC 
JR 
CALL 
CALL 
LD 
RST 
DB 

DRVE DB 
JP 

Super Utility Plus 3.0 

***** SAMPLE ROUTINES***** 

number of free directory records on a disk 
8 
7 
'** Computing 
10 
0 
@ONEDRIV 
@RDDIR 
NZ,@NOTDIR 
@ENTRIES 
@INTCNT 
HL,@FILBUFF 
4, {HL) 
Z,@ADDCNT 
@HLDIR 
E 
NZ,LOOP 
@SHOCNT 
@DRVASC 
{DRVE) ,A 
8 
'Free Files on 
'x.',10,0 
@GOBACK 

;display message 
;clear screen 

Number of Directory Records**' 
;linefeed 
;string terminator 
;ask for a single drive 
;read the directory 
;not a directory 
;load E with# of directory records 
;clear the counter 
;start of files 
;active record? 
;bump counter if available 
;bump HL to next file area 
;decrement file counter 
;do 'em all 
;display the counter 
;get ascii drive number 
;insert into message 
;and print this message 
Drive ' 
;finish message 
;press <ENTER> to continue 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

; read 
START 

a directory into 
CALL @ONEDRIV 
CALL @RDDIR 

memory, then display it by sector 

JP NZ,@NOTDIR 
LD HL,@GATBUFF 
JP @DOADDR 

; verify all sectors on a 
START CALL @ONEDRIV 

CALL @INTCNT 
LD D,0 
CALL @FIRSTS 

BEGIN LD BC,@BUFFER 
RST 28H 
CALL @NEXSEC 
JR NC,BEGIN 
CALL @SHOCNT 
RST 8 

;ask for drive 
;read the directory 
;not a directory 
;where data begins 
;display it in memory 

diskette 
;ask for a drive 
;zero the counter 
;starting track on disk 
;E = first sector 
;where to read data 
;display track/sector and.read 
;bump to next sector 
;C = end of disk 
;display error counter 
;message 

DB 'Bad Sectors on the disk.' ,10,0 

; zero 
START 

AGAIN 

JP @GOBACK 

a single sector on 
CALL @GETDAT 
LD BC,@BUFFER 
CALL @ZBUFF 
RST 30H 
JP Z,@GOBACK 

;terminate here 

a disk 
;ask for drive, track, sector 
;point to buffer area 
;zero the buffer 
;write to disk 
;successful 

it 

JR AGAIN ;write again if 'retry' selected 

· · check I . 

START 

MSG 

to see 
CALL 
CALL 
JR 
CALL 
LD 
RST 
DB 
DB 
JR 

if a file exists on a disk 
@ASKFILE ;fetch file.name 
NZ,@NOFILE ;file not found 
NZ,START ;ask again 
@DRVASC ;get drive where found 
(MSG) ,A ;put into message 
8 ;display message 
'File Found on Drive ' 
'x. 1 ,10,0 
START ;ask for another 

Copyright (c) 1982 by Breeze/QSD, Inc. 

65 



.. 66 

; log 
START 

OKGO 

LOOPA 

DEAD 

TRSDOS 
CALL 
CALL 
JP 
LD 
CP 
JR 
RST 
DB 
JR 
CALL 
LD 
LD 
LD 
LD 
INC 
JR 
CALL 
PUSH 
LD 
LD 
PUSH 
PUSH 
POP 
LD 
CALL 
LD 
LD 
LD 
AND 
LD 
ADD 
ADD 
LD 
LD 
LD 
LD 
LD 
LD 
POP 
POP 
INC 
INC 
INC 
DJNZ 
CALL 

Super Utility Plus 3.0 

III system files into a directory 
@ONEDRIV ;ask for drive number 
@RDDIR ;read the directory 
NZ,@NOTDIR ;non disk error, invalid format 
A, (IY+7) ;fetch dos type 
3 ;TRS III DD? 
Z,OKGO ;ok if yes 
8 ;else print message 
'Not a TRSDOS III diskette.',10,0 
START ;ask again 
@DIRPART ;display name/date, free grans 
IX,@HITBUFF+0E0H ;where sys files start 
C,0 ;current system number 
B,16 ;16 system files possible 
A,(IX) ;get a byte 
A ;FF= inactive 
Z,DEAD ;this one not active 
@FNDSPOT ;locate an available space 
BC ;save counters 
C, (IX+0) ;fetch# grans/offset 
B,(IX+l) ;fetch start track 
IX ;save IX for next loop 
HL ;pass to IX 
IX ;IX= start of record 
(IX) ,10H ;set as active, non-system, visible 
PUTNAME ;insert name into the entry 
(IX+22) ,B ;insert into file entry 
(IX+23) ,C ;put into file entry 
A,C ;fetch it 
lFH ;get number of grans 
E,A ;save it 
A,A ;A times 2 
A,E ;A times 3 (3 sectors per gran) 
(IX+20) ,A ;put end of file sector 
(IX+l6) ,0EFH ;insert null passwords 
(IX+17),5CH ;EF5CH = null password TRSIII 
( IX+l8) , 0EFH 
(IX+l9),5CH 
( IX+24) , 0FFH 
IX 
BC 
IX 
IX 
C 
LOOPA 
@MAKEHIT 

;insert extent terminator 
;restore pointer 
;restore counters 
;point to next one 
;2 bytes per entry 
;bump system number counter 
;finish them all 
;insert names in HIT table 

Copyright (c) 1982 by Breeze/QSD, Inc. 



Technical Manual 

JP 
PUTNAME LD 

LD 
LD 
LD 
LD 
LD 
LD 
PUSH 
RST 
LD 
LD 
POP 
LD 
LD 
LD 
RET 

@WRDIR 
(IX+S), 'SI 
(IX+6), 'Y' 
(IX+7), 'S' 
(IX+8), 'T' 
(IX+9), 'E' 
(IX+l0},'M' 
A,C 
BC 
18H 
(IX+ll) ,C 
(IX+l2),B 
BC 
(IX+l3),'S' 
(IX+l4),'Y' 
(IX+l5),'S' 

;write directory back to the disk 
;insert filename 

;get system number 
;must save counter 
;convert to ascii 
;put into filename 

;can restore it now 

;name now in the right place 

Copyright (c) 1982 by Breeze/QSD, Inc. 

67 







.. 




